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a b s t r a c t 

Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), espe- 

cially at high b-values. Acquiring data at high b-values contains relevant information and is now of great 

interest for microstructural and connectomics studies. High noise levels bias the measurements due to 

the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the dif- 

fusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads 

to a spatially varying noise distribution, which depends on the parallel acceleration method implemented 

on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all 

existing data, without adding to the scanning time. We first apply a statistical framework to convert both 

stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, 

effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the 

Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 

4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dic- 

tionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding 

the reconstruction error with the local noise variance. We compare against three other state-of-the-art 

denoising methods and show quantitative local and connectivity results on a synthetic phantom and on 

an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise 

bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility 

of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising 

improves the visual quality of the data and reduces the number of spurious tracts when compared to 

the noisy acquisition. Our work paves the way for higher spatial resolution acquisition of diffusion MRI 

datasets, which could in turn reveal new anatomical details that are not discernible at the spatial resolu- 

tion currently used by the diffusion MRI community. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Diffusion magnetic resonance imaging (MRI) is an imaging tech-

ique that allows probing microstructural features of the white

atter architecture of the brain. Due to the imaging sequence

sed, the acquired images have an inherently low signal-to-noise

atio (SNR), especially at high b-values. Acquiring data at high

-values contains relevant information and is now of great in-

erest for connectomics ( Van Essen et al., 2013 ) and microstruc-

ure ( Alexander et al., 2010 ) studies. High noise levels bias the

easurements because of the non-Gaussian nature of the noise,
✩ This paper was recommended for publication by Nicholas Ayache. 
∗ Corresponding author. Tel.: +1 819-821-70 0 0. 
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hich in turn prohibits high resolution acquisition if no further

rocessing is done. This can also lead to a false and biased esti-

ation of the diffusion parameters, which impacts on the scalar

etrics (e.g. fractional anisotropy (FA)), or in the fitting of various

iffusion models (e.g. diffusion tensor imaging (DTI) and high an-

ular resolution diffusion imaging (HARDI) models). This can fur-

her impact subsequent tractography and connectivity analysis if

he spatially variable noise bias is not taken into account. There-

ore, high SNR diffusion weighted images (DWIs) are crucial in or-

er to draw meaningful conclusions in subsequent data or group

nalyses ( Jones et al., 2013 ). 

This paper focuses on denoising techniques since they can be

sed on all existing data, without adding to the scanning time.

hey also can be readily applied to any already acquired dataset

ust like motion and eddy current corrections that are commonly

pplied on acquired datasets. One possible way to acquire higher

http://dx.doi.org/10.1016/j.media.2016.02.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.02.010&domain=pdf
mailto:samuel.st-jean@usherbrooke.ca
http://dx.doi.org/10.1016/j.media.2016.02.010
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Table 1 

Features of the compared denoising algorithm, see Section 3.3 for an in- 

depth review of each method. The NLSAM algorithm is the only technique 

robust to both the spatially varying nature of the noise and the nc- χ bias 

at the same time. 

Noise type AONLM LPCA msPOAS NLSAM 

Stationary Rician � � � � 

nc- χ X X � � 

Variable Rician � � X � 

nc- χ X X X � 

Use 4D angular information X � � � 
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quality data is to use better hardware, but this is costly and not

realistic in a clinical setting. One can also use a bigger voxel size in

order to keep the relative SNR at the same level, but at the expense

of a lower spatial resolution or acquiring fewer directions to keep

an acceptable acquisition time ( Descoteaux & Poupon, 2014 ). Aver-

aging multiple acquisitions also increases the SNR, but this should

be done either using Gaussian distributed noisy data ( Eichner

et al., 2015 ) or in the complex domain to avoid the increased noise

bias ( Jones et al., 2013 ). 

With the advance of parallel imaging and acceleration tech-

niques such as the generalized autocalibrating partially paral-

lel acquisitions (GRAPPA) or the sensitivity encoding for fast

MRI (SENSE), taking into account the modified noise distribution is

the next step ( Dietrich et al., 2008; Aja-Fernández et al., 2014 ). The

noise is usually modeled with a Rician distribution when SENSE is

used and a non central Chi (nc- χ ) distribution with 2N degrees

of freedom (with N the number of receiver coils) when a Sum of

Squares (SoS) reconstruction is used. If GRAPPA acceleration is also

used with a SoS reconstruction, the degrees of freedom of the nc-

χ distribution will vary between 1 and 2N ( Aja-Fernández et al.,

2014 ). Some techniques have been specifically adapted by the med-

ical imaging community to take into account the Rician nature

of the noise such as non local means algorithms ( Tristán-Vega &

Aja-Fernández, 2010; Coupé et al., 2008; Manjón et al., 2010 ), Lin-

ear Minimum Mean Square Error estimator ( Aja-Fernandez et al.,

2008; Brion et al., 2013 ), generalized total variation ( Liu et al.,

2014 ), a majorize-minimize framework with total variation denois-

ing ( Varadarajan & Haldar, 2015 ), maximum likelihood ( Rajan et al.,

2012 ) or block matching ( Maggioni et al., 2013 ). Some methods

( Tristán-Vega & Aja-Fernández, 2010; Brion et al., 2013; Manjón

et al., 2013; St-Jean et al., 2014; Bao et al., 2013; Becker et al., 2014;

Gramfort et al., 2014; Lam et al., 2014 ) have also been specifically

designed to take advantage of the properties of the diffusion MRI

signal such as symmetry, positivity or angular redundancy. Since

the data acquired in diffusion MRI depicts the same structural in-

formation, but under different sensitizing gradients and noise real-

ization, these ideas take advantage of the information contained in

the multiple acquired diffusion MRI datasets. 

We thus propose to exploit the structural redundancy across

DWIs through a common sparse representation using dictionary

learning and sparse coding to reduce the noise level and achieve

a higher SNR. Our method can be thought of a Non Local Spatial

and Angular Matching (NLSAM) with dictionary learning. To the

best of our knowledge, most recent state-of-the-art denoising al-

gorithms either concentrate on modeling the nc- χ noise bias or

the spatially varying nature of the noise in a Rician setting. Our

method thus fills the gap by being robust to both of these as-

pects at the same time, as seen in Table 1 . We will compare our

method against one structural MRI method and two other publicly

available algorithms : the Adaptive Optimized Non Local Means

(AONLM) ( Manjón et al., 2010 ), which is designed for 3D structural

MRI, the Local Principal Component Analysis (LPCA) ( Manjón et al.,

2013 ) and the multi-shell Position-Orientation Adaptive Smoothing
msPOAS) algorithm ( Becker et al., 2014 ), both designed for pro-

essing diffusion MRI datasets. More information on each method

eatures and parameters will be detailed later. 

The contributions of our work are: 

(i) Developing a novel denoising technique specifically tailored

for diffusion MRI, which takes into account spatially varying

Rician and nc- χ noise. 

(ii) Quantitatively comparing all methods on common diffusion

MRI metrics. 

(iii) Quantifying the impact of denoising on local reconstruction

models. 

(iv) Analyzing the impact of denoising on tractography with a

synthetic phantom and a high spatial resolution dataset. 

. Theory 

We now define two important terms used throughout the

resent work. Firstly, a patch is defined as a 3D region of neigh-

oring spatial voxels, i.e. a small local region of a single 3D DWI.

econdly, a block is defined as a collection of patches taken at

he same spatial position, but in different DWIs, i.e. a block is

 4D stack of patches which are similar in the angular domain.

he reader is referred to Fig. 1 for a visual representation of the

rocess. 

he block matching algorithm. Reusing the key ideas from the non

ocal means, the block matching algorithm ( Dabov et al., 2007 ) fur-

her exploits image self-similarity. Similar 2D patches found inside

 local neighborhood are stacked into a 3D transform domain and

ointly filtered via wavelet hard-thresholding and Wiener filtering.

ombining these filtered estimates using a weighted average based

n their sparsity leads to superior denoising performance than the

on local means filter. The idea has been extended in 3D for MRI

mage denoising in ( Maggioni et al., 2013 ) and an adaptive patch

ize version for cardiac diffusion MRI image denoising was success-

ully employed by ( Bao et al., 2013 ). 

he dictionary learning algorithm. Dictionary learning has been

sed in the machine learning community to find data driven sparse

epresentations ( Elad & Aharon, 2006; Mairal et al., 2009 ). Typi-

ally, a set of atoms (called the dictionary) is learned over the data,

roviding a way to represent it with a basis tailored to the signal

t hand ( Olshausen & Field, 1996 ). This is analogous to using an

ff-the-shelf basis like the discrete cosine transform or wavelets,

ut in a data-driven manner which gives better results than using

 fixed, general purpose basis. The main difference is that this is

ot necessarily a basis in the sense it can also be overcomplete,

.e. it can have more atoms than coefficients. Given a set of input

ata X = [ x 1 , . . . , x n ] ∈ R 

m ×n organized as column vectors, the pro-

ess is expressed as 

in 

D , α

1 

n 

n ∑ 

i =1 

(
1 

2 

‖ 

x i − D αi ‖ 

2 
2 + λ‖ 

αi ‖ 1 

)
s.t. ‖ 

D ‖ 

2 
2 = 1 , (1)

here D ∈ R 

m ×p is the learned dictionary, λ is a trade-off param-

ter between the data fidelity term and the penalization on the

oefficients α = [ α1 , . . . , αn ] ∈ R 

p×n . A higher value of λ promotes

parsity at the expense of the similarity with the original data. The

olumns of D are also constrained to be of unit � 2 norm in order

o avoid degenerated solutions ( Mairal et al., 2009; Elad & Aharon,

006; Gramfort et al., 2014 ). The key is to devise a sparse repre-

entation to reconstruct structural information and discard noise,

ince the latter does not typically allow a sparse representation in

ny basis. Using a penalization on the � 1 norm of the coefficients

romotes sparsity, hence providing denoising through the regular-

zed reconstruction. This idea has led to inpainting and denoising
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Fig. 1. ( a) A 3D block is made by stacking along the 4th dimension the b0, a DWI and its angular neighbors, which share similar structure, but under a slightly different 

noise realization. (b) Disposition of equidistant angular neighbors on the sphere. 

Fig. 2. Top : (a) A noisy acquisition with slowly varying nc- χ noise and (b) the resulting stabilized, Gaussian distributed noisy DWI. (c) A noisy acquisition with fast varying 

Rician noise where the background was masked by the scanner with (d) its stabilized counterpart. Bottom : Histogram of the nc- χ noise distribution in the selected 

background region of (a) before stabilization and (b) after stabilization. Note the non-Gaussianity of the noise in (a) versus (b) . 
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pplications from the machine learning community ( Mairal et al.,

009; Elad & Aharon, 2006 ) or even to accelerated acquisition pro-

ess in the diffusion MRI community for diffusion spectrum imag-

ng (DSI) ( Gramfort et al., 2014 ). 

djusting for various noise types. Although the original formula-

ions of Eqs. (1) and (4) assume stationary, white additive Gaus-

ian noise, this is usually not true in diffusion MRI data, especially

t high b-values and low SNR. The noise is usually modeled as fol-

owing a Rician distribution or a nc- χ distribution when used with

arallel imaging depending on the reconstruction algorithm and

he number of coils N used during the acquisition ( Dietrich et al.,

008; Aja-Fernández et al., 2014 ). This introduces a bias which de-

ends on the intensity of the signal that must be taken into ac-

ount to recover the expected value of the original signal as shown

n Fig. 2 . Note, though, that other common preprocessing correc-

ions, such as motion correction or eddy current correction, require
nterpolation and could thus change the theoretical noise distribu-

ion ( Veraart et al., 2013 ). 

The key idea lies in the fact that the nc- χ distribution is actu-

lly made from a sum of Gaussians, from which the Rician distri-

ution is a special case with N = 1. By making the hypothesis that

ach of the 2N Gaussian distributions share the same standard de-

iation σ G ( Koay et al., 2009a ), one can map a value m from a nc- χ
istribution to an equivalent value ˆ m from a Gaussian distribution.

e first compute estimates for σ G and η (which is an estimate of

he signal value in a Gaussian setting). If η is below the noise floor

ue to a low local SNR, that is when η < σG 

√ 

π/ 2 , we set η = 0 in-

tead of being negative as suggested by Bai et al. (2014) . The next

tep uses the cumulative distribution function (cdf) of a nc- χ dis-

ribution and the inverse cumulative distribution function (icdf) of

 Gaussian distribution to find the equivalent value ˆ m between the

wo distributions. This effectively maps a noisy nc- χ distributed

ignal m to an equivalent noisy Gaussian distributed signal ˆ m . See

ig. 3 for a synthetic example with a visual depiction of the process
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Fig. 3. A synthetic example of the stabilization algorithm. (a) Given a noisy value m = 678 observed in a nc- χ distribution with N = 4 and σG = 200 , the underlying value is 

estimated as η = 407 . (b) The associated probability in the nc- χ cdf with η is α = 0 . 513 , (c) thus giving from the inverse cdf of a Gaussian distribution with mean μ = 407 

and standard deviation σG = 200 a new noisy value ˆ m = 413 . 
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for mapping nc- χ signals to Gaussian distributed signals and ( Koay

et al., 2009a ) for the original in-depth details. 

Using a variance stabilization means considering the noise as

additive white Gaussian noise, which allows any already designed

technique for Gaussian noise to be used without any modification.

The author of ( Foi, 2011 ) has shown that techniques with a Rician

noise adaptation performed equally well as their Gaussian noise

version through the use of a noise stabilization approach. The same

idea has been directly applied with block matching ( Dabov et al.,

2007 ) for structural MRI in ( Maggioni et al., 2013 ). The classical

solution to remove the noise bias is to include the noise model

into the denoising algorithm itself, as for example done in ( Aja-

Fernandez et al., 2008; Becker et al., 2014; Lam et al., 2014; Manjón

et al., 2010 ). The drawback with this solution is that each method

has to be rethought to account for any other noise type not con-

sidered in its original formulation. 

3. Method 

Adjusting for various noise types. In this paper, we will deal with

both the Rician and nc- χ noise model on a voxelwise basis

through the noise stabilization technique of ( Koay et al., 2009a ).

This indeed makes our algorithm easily adaptable for any noise

type by simply changing the pre-applied transformation as needed.

We will use the Probabilistic Identification and Estimation of Noise

(PIESNO) ( Koay et al., 2009b ) to estimate the stationary noise stan-

dard deviation. PIESNO works on a slice by slice basis, assuming

the background noise as stationary along the selected slice, and is

designed to find the underlying standard deviation of the Gaussian

noise given its Rician or nc- χ nature. Voxels that are considered

as pure background noise are found automatically by the method,

using the fact that the squared mean of those voxels follows a

Gamma distribution. Once automatically identified, the standard

deviation σ G of those voxels can be computed and a new estima-

tion of the Gamma distribution is made with the updated σ G until

convergence. In the case of spatially varying noise, we will use a

method similar to ( Manjón et al., 2010 ), where the noise is esti-

mated locally as 

σ 2 
i = min || u i − u j || 2 2 , ∀ i � = j, (2)

with u i a noisy patch computed by subtracting a patch to a low-

pass filtered version of itself and applying the local Rician correc-

tion factor of ( Koay & Basser, 2006 ). If the background was masked

automatically by the scanner or is unreliable due to the scanner

preprocessing for statistical estimation, we use a similar idea by

computing the local standard deviation of the noise field as 

σ = std (u − low-pass (u )) (3)
i i i 
f a noise map was acquired during the scanning session, it can

e sampled directly to estimate the parameters of the noise dis-

ribution. In the event that such a map is unavailable, a synthetic

ne can be constructed by subtracting the image from its low-pass

ltered counterpart (see Eq. (3) ). Since the noise is assumed as in-

ependent and identically distributed across DWIs, we apply a me-

ian filter on the 4D dataset to get a 3D noise field. Finally, a Gaus-

ian filter with a full-width at half maximum of 10 mm is applied

o regularize the noise field, which is then corrected for the more

eneral nc- χ bias with the correction factor of ( Koay & Basser,

006 ). A similar approach based on extracting the noise field with

 principal component analysis was used by ( Manjón et al., 2013 ). 

ocally adapting the dictionary learning. In order to locally adapt

he method to spatially varying noise, we add some more con-

traints to the classical formulation of Eq. (1) . Firstly, since the

easured signal in diffusion MRI is always positive, we use this

ssumption to constrain the positivity of the global dictionary D

nd the coefficients α, i.e. D ≥ 0, α ≥ 0 as done in ( Gramfort et al.,

014 ). We fixed the regularization parameter λ for Eq. (1) in the

ame fashion as ( Mairal et al., 2009 ), that is λ = 1 . 2 / 
√ 

m , with

 = ps 3 × an, ps is the patch size and an the number of angular

eighbors. Secondly, once D is known, we use Eq. (4) (see the next

aragraph) iteratively until convergence with the constraint α ≥
 and λi = σ 2 

i 
(m + 3 

√ 

2 m ) , where σ 2 
i 

is the local noise variance

ound either with PIESNO or Eq. (3) . In accordance with ( Candès

t al., 2008 ), λi is an upper bound on the � 2 norm of the noise.

e set the convergence as reached for αi at iteration j when

ax | αi, j − αi, j−1 | < 10 −5 or until a maximum of 40 iterations is

ealized. 

daptive and Iterative � 1 Minimization. While Eq. (1) will both

onstruct the dictionary D and find the coefficients α, there are

pecialized iterative algorithms for solving � 1 problems in order

o yield sparser solutions ( Daubechies et al., 2010; Candès et al.,

008 ). An equivalent constrained formulation for solving each col-

mn i of α is 

in 

αi 

∥∥w j αi 

∥∥
1 

s.t. 
1 

2 

‖ 

x i − D αi ‖ 

2 
2 ≤ λi , (4)

here w j is a weighting vector penalizing the coefficients of αi 

t iteration j . Eq. (4) can thus be iterated to further identify non

ero coefficients in αi by setting w j+1 = 

1 
| αi | + ε for the next itera-

ion. The algorithm is then started with w 0 = 1 and ε = max | D 

T ξ | .
s suggested by ( Candès et al., 2008 ), ξ ∼ N (0 , σ 2 ) is set as a

andom Gaussian vector, which gives a baseline where significant

ignal components might be recovered. While similar in spirit to

q. (1) , Eq. (4) provides a way to find the sparser representation

or α while bounding the � reconstruction error. 
i 2 
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1 http://hardi.epfl.ch/static/events/2013 _ ISBI/ 
2 http://www.emmanuelcaruyer.com/phantomas.php 
To the best of our knowledge, our paper is also the first to use

he noise variance as an explicit bound on the � 2 reconstruction

rror. This yields a sparse representation while controlling at the

ame time the fidelity with respect to the original data, while the

lassical way is to use the variance as a regularized penalization

actor. 

.1. The proposed algorithm 

Our new NLSAM algorithm combines ideas from block matching

nd sparse coding. We will use the same kind of framework, but by

eplacing the thresholding part in the block matching with a step

f dictionary denoising instead, allowing the penalization on the

parsity of the signal to regularize the noisy blocks. We also take

xplicit advantage of the fact that diffusion MRI data is composed

f multiples volumes of the same structure, albeit with different

oise realizations and contrasts across DWIs. This allows sparser

stimates to be found, further enhancing the separation of the data

rom the noise ( Olshausen & Field, 1996 ). Our method is thus com-

osed of three steps: 

1. Correct the noise bias if needed. 

2. Find angular neighbors on the sphere for each DWI. 

3. Apply iterative local dictionary denoising on each subset of

neighbors. 

Step 1. In case the noise is not Gaussian distributed, we first

orrect for the noise bias by finding the Gaussian noise standard

eviation with PIESNO ( Koay et al., 2009b ). If the background is

asked, we instead use Eq. (3) . We then transform the DWIs into

aussian distributed, noisy signals using the correction scheme

f ( Koay et al., 2009a ). 

Step 2. We find the angular neighbors for each of the DWIs. In

his step, the local angular information is encoded in a 4D block

f similar angular data, as seen in Fig. 1 . The gradients are sym-

etrized to account for opposite polarity DWIs, which share sim-

lar structure to their symmetrized counterpart. The search is also

ade along all the shell at the same time, since structural infor-

ation (such as sharp edges) is encoded along the axial part of the

ata. This encodes the similar angular structure of the data along

he 4th dimension in a single vector. 

Step 3. The dictionary D is constructed with Eq. (1) and the

locks are then denoised with Eq. (4) . This step can be thought of

nding a linear combination with the smallest number of atoms

o represent a block. In order to adapt to spatially varying noise,

ach block is penalized differently based on the local variance of

he noise. This enables the regularization to adapt to the amount

f noise in the block, which is usually stronger as the acquired sig-

al is farther from the receiver coils. Since each overlapping block

s extracted, each voxel is represented many times and they are

ecombined using a weighted average based on their sparsity as

n ( Manjón et al., 2013; Maggioni et al., 2013 ). For each voxel i with

ntensity v i contained in multiple overlapping blocks V j in neigh-

orhood V , we set the final value of v i as 

 i = 

∑ 

j∈ V v j (1 + || V j || 0 ) ∑ 

j∈ V 1 + || V j || 0 , (5) 

here V is the same spatial position for voxel i across multiple

locks V j . This assumes that more coefficients in block V i also

eans more noise in the reconstruction. The � 0 norm thus pe-

alizes reconstructions with more coefficients and assigns a lower

eight in that case for the overlapping weighted average. 

This third step is then repeated for all the DWIs. Since each

WI will be processed more than once with a different set of

eighbors each time (see Fig. 1 for the block formation process),

e obtain multiple denoised volumes of exactly the same data,

ut denoised in a different angular context. Once all the DWIs
ave been processed, we average the multiple denoised versions

btained previously in order to further reduce any residual noise.

ee Appendix A for an outline of the NLSAM algorithm as pseu-

ocode. The result will be a denoised version of the input, through

oth dictionary learning and spatial and angular block matching. 

.2. Datasets and acquisition parameters 

ynthetic phantom datasets. The synthetic data simulations are

ased on the ISBI 2013 HARDI challenge phantom 

1 and were

ade with phantomas 2 . We used the given 64 gradients set from

he challenge at b-values of 10 0 0 and 30 0 0 s/mm 

2 . For simplic-

ty, we will now refer to these datasets as the b10 0 0 and the

30 0 0 datasets. The datasets were generated with Rician and nc- χ
oise profile, both stationary and spatially varying, at two different

ignal-to-noise ratios (SNR) for each case. In total, we thus have 8

ifferent noise profiles for each b-value. The stationary noise was

enerated with SNR 10 and 20 and the spatially varying noise was

enerated with SNR varying linearly from 5 to 15 and from 7 to

0. The noise distributions were generated for each SNR by setting

 = 1 for the Rician noise and N = 12 for the nc- χ noise. The noisy

ata was generated according to 

ˆ 
 = 

√ √ √ √ 

N ∑ 

i =0 , j=0 

(
I √ 

N 

+ βεi 

)2 

+ βε2 
j 
, where εi , ε j ∼ N (0 , σ 2 ) , (6)

here ˆ I is the resulting noisy volume, N (0 , σ 2 ) is a Gaussian dis-

ribution of mean 0 and variance σ 2 with σ = mean (b0) / SNR

nd mean(b0) is the mean signal value of the b = 0 s/mm 

2 image.

is a mask to create the noise distribution set to 1 in the constant

oise case and as a sphere for the spatially varying noise case. For

he spatially varying noise experiments, β has a value of 1 on the

orders up to a value of 3 at the middle of the mask, thus gener-

ting a stronger noise profile near the middle of the phantom than

or the stationary (constant) noise case. As shown on Fig. 4 , this

esults in a variable SNR ranging from approximately SNR 5 and

NR 7 in the middle of the phantom up to SNR 15 and SNR 20 for

he spatially varying noise case. This noise mimics a homogeneous

oise reconstruction as implemented by some scanners while still

aving a spatially varying noise map. 

eal datasets. In order to compare our NLSAM method on a real

ataset, we acquired a full brain in-vivo dataset consisting of 40

WIs at b = 10 0 0 s/mm 

2 and one b = 0 s/mm 

2 . The acquisition

patial resolution was 1.2 × 1.2 × 1.2 mm 

3 , TR/TE = 18.9 s /

04 ms, gradient strength of 45 mT/m on a 3T Philips Ingenia

canner with a 32 channels head coil for a total acquisition time

f 13 minutes. An in-plane parallel imaging factor of R = 2 was

sed with the SENSE reconstruction algorithm, thus giving a fast

patially varying Rician noise distribution (hence, the denoising al-

orithms will be set with N = 1 ) even if multiple coils are used

y the reconstruction algorithm for producing the final image (see

ig. 2 ). No correction was applied to the dataset, as we wanted to

how the effectiveness of denoising without any other preprocess-

ng step such as eddy current or motion correction, which could

ntroduce blurring caused by interpolation. 

To obtain a comparable clinical-like baseline dataset and show

he advantage of acquiring directly high resolution DWIs, we also

btained a 64 DWIs dataset at b = 10 0 0 s/mm 

2 
and one b =

 s/mm 

2 of the same subject. The spatial resolution was 1.8 × 1.8

1.8 mm 

3 , TR/TE = 11.1 s / 63 ms, for a total acquisition time of

http://hardi.epfl.ch/static/events/2013_ISBI/
http://www.emmanuelcaruyer.com/phantomas.php
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Fig. 4. Synthetic b10 0 0 datasets with various noise profiles used in the experiments. The top row shows the b0 image, the middle row shows the same DWI across noise 

types and the bottom row shows the various noise distribution which generated the middle row. From left to right : the noiseless data, SNR 10 with stationary Rician noise, 

SNR 10 with stationary nc- χ noise, SNR 15 with spatially variable Rician noise, SNR 15 with spatially varying nc- χ noise. 
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tial resolution counterpart. 
12 mins. The acquisition was made on the same scanner, but dur-

ing another scanning session. No further processing nor denoising

was done on this dataset for the reasons mentioned above. This

can be thought of having a higher angular resolution at the cost of

a lower spatial resolution for a comparable acquisition time. 

3.3. Other denoising algorithms for comparison 

We now present the various features and cases covered by the

denoising algorithms studied in this paper. The Adaptive Optimized

Nonlocal Means (AONLM) method ( Manjón et al., 2010 ) is designed

for Rician noise removal in a 3D fashion and works separately on

each DWIs volume. It also includes a Rician bias removal step and

is able to spatially adapt to a varying noise profile automatically.

We used the recommended default parameter of a 3D patch size

of 3 × 3 × 3 voxels with the Rician bias correction in all cases.

The Local Principal Component Analysis (LPCA) method ( Manjón

et al., 2013 ) is also made to take into account the Rician noise

bias and is spatially adaptive, but also uses the information from

all the DWIs in the denoising process. We used the automatic

threshold set by the method with the Rician noise correction for

all experiments. Both AONLM and LPCA can be downloaded from

the author’s website 3 . The multi-shell Position-Orientation Adap-

tive Smoothing (msPOAS) algorithm ( Becker et al., 2014 ) was de-

signed for both Rician and nc- χ noise, while also taking into ac-

count the angular structure of the data for adaptive smoothing.

We discussed with the authors of msPOAS 4 for their recommen-

dations and using their suggestion, we set k � = 12 and λ = 18 . We

also supplied the correct value for N and used the implemented

automatic detection of the noise standard deviation from msPOAS.
3 http://personales.upv.es/jmanjon/denoising/index.htm 

4 http://cran.r-project.org/web/packages/dti/index.html 
or the NLSAM algorithm, we used a patchsize of 3 × 3 × 3 vox-

ls with 5 angular neighbors, which corresponds to the number

f angular neighbors at the same distance on the sphere for each

elected DWI. The value of N was given to the algorithm and the

umber of atoms was set to two times the number of voxels in a

lock for the dictionary learning part, which was repeated for 150

terations. The other parameters were set as described in Section 3 .

s shown in Table 1 , our method is designed to work on both sta-

ionary and spatially variable Rician and nc- χ noise. The NLSAM

lgorithm is implemented in python and is also freely available. 5 

Finally, we quantitatively assess the performance of each

ethod by comparing them against the noiseless synthetic data

sing 

(i) The peak signal-to-noise ratio (PSNR) in dB and the struc-

tural similarity index (SSIM) on the raw data intensi-

ties ( Wang et al., 2004 ). 

(ii) The dispersion of the FA error, computed from a weighted

least-square diffusion tensor model. 

(iii) The mean angular error (AE) in degrees and the discrete

number of compartments (DNC) error for a region of cross-

ings ( Daducci et al., 2014; Paquette et al., 2014 ). 

(iv) The Tractometer ( Côté et al., 2013 ) ranking platform on

deterministic tractography algorithms for the synthetic

datasets. This platform computes global connectivity met-

rics, giving an insight on the global coherence of the de-

noised datasets in a tractography setting. 

(v) Tracking some known bundles on the high resolution in-vivo

dataset and qualitatively comparing them to their lower spa-
5 https://github.com/samuelstjean/nlsam 

http://personales.upv.es/jmanjon/denoising/index.htm
http://cran.r-project.org/web/packages/dti/index.html
https://github.com/samuelstjean/nlsam
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Fig. 5. Phantomas b10 0 0 synthetic dataset at SNR 10 for stationary nc- χ noise on the y = 24 slice. From top to bottom : Raw diffusion MRI, colored FA map, zoom on 

extracted peaks from fODF of order 8. Note how NLSAM restores the structure without blurring on the colored FA map and is the only method to restore the peaks from the 

noisy dataset in the zoomed white box region. 
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.4. Local models reconstruction and fiber tractography 

The weighted least-square diffusion tensors were reconstructed

sing the default parameters of Dipy ( Garyfallidis et al., 2014 ) to

ompute the FA values. We used the Constrained Spherical Decon-

olution (CSD) ( Tournier et al., 2007 ) with a spherical harmonics

f order 8 to reconstruct the fODFs and extract the peaks subse-

uently used for the deterministic tracking. To compute the fiber

esponse function (frf), we used all the voxels in the white mat-

er that had an FA superior to 0.7. If less than 300 voxels meeting

his criterion were found, the FA threshold was lowered by 0.05

ntil the criterion was met. See Sections 4.2 and 5.3 for more in-

ormation about the bias introduced in the FA. For the synthetic

atasets, the tracking was done inside the white matter mask and

he seeding was done from the bundles extremities to mimic seed-

ng from the white-gray matter interface ( Girard et al., 2014 ). We

sed 100 seeds per voxels to allow sufficient bundle coverage, a

tepsize of 0.2 mm and a maximum angle deviation of 60 °. The

ther parameters used were the defaults supplied by the tractome-

er pipeline ( Côté et al., 2013 ). The in-vivo datasets determinis-

ic tracking was made with the technique of ( Girard et al., 2014 )

y seeding from the white matter and gray matter interface with

he particle filtering and generating approximately 1 million of

treamlines. White matter masks were created by segmenting a

1 image with FSL FAST 6 from the same subject and then regis-
6 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST 
ered with ANTs 7 to each in-vivo dataset. The bundles were finally

utomatically segmented using the White Matter Query Language

WMQL) ( Wassermann et al., 2016 ) Tract Querier tool with regions

btained from a T1 white matter and gray matter parcellation. This

tlas-based automatic dissection method extracts fiber bundles au-

omatically using anatomical definitions in a reproducible manner

or all methods, as opposed to the traditional way of manually

efining including and excluding ROIs to define bundles. Visualiza-

ion of fODFs, peaks and tractography was made using the fiber-

avigator 8 ( Chamberland et al., 2014 ). 

. Results 

.1. Preserving the raw DWI data 

Fig. 5 shows the b10 0 0 noiseless data, the noisy input data at

NR 10 for nc- χ stationary noise and the results of the denoising

n the synthetic phantom for all compared methods. This is the

oise case theoretically covered by msPOAS and our NLSAM algo-

ithm. We also show two zoomed regions of crossings with the

econstructed peaks extracted from fODFs. All perceptual and FA

etrics were computed on the slice shown while angular metrics

ere computed in the zoomed region depicted by the yellow box.

ote how the small blue bundle and its crossings are preserved on
7 http://picsl.upenn.edu/software/ants/ 
8 https://github.com/scilus/fibernavigator 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
http://picsl.upenn.edu/software/ants/
https://github.com/scilus/fibernavigator
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Fig. 6. From top to bottom, the raw high resolution in-vivo data corrupted with spatially varying Rician distributed intensities, the colored FA map and a zoom on two 

regions of crossings. All denoised methods were applied on the high spatial resolution 1.2 mm dataset. We also show an acquisition of the same subject at 1.8 mm for visual 

comparison. Our NLSAM algorithm is able to recover more crossings from the 3 way junction of the SLF, the CST and the CC as shown in the yellow and white boxes. While 

the 1.8 mm dataset is less noisy, its lower spatial resolution also means that each voxel contains more heterogeneous tissues and mixed diffusion orientations. The 1.2 mm 

denoised dataset shows more crossings without the averaging effect of the larger voxel size. For a comparable acquisition time, the denoised high resolution dataset has 

more information than its lower resolution counterpart without processing. 
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the NLSAM denoised dataset, while other denoising methods tend

to introduce blurring. 

Fig. 6 shows the noisy high resolution in-vivo dataset, the de-

noised version obtained for each algorithm and the low spatial

resolution acquisition of the same subject without any denoising.

Since our scanner uses a 32 channels head-coil but implements the

SENSE reconstruction algorithm, the resulting spatially varying Ri-

cian noise distribution is the case covered by AONLM, LPCA and

our NLSAM algorithm. We show a coronal slice for the gradient di-

rection closest to (0, 1, 0), the colored FA map and a zoom on two

regions of crossings. The yellow region shows the junction of the

corticospinal tract (CST) and superior longitudinal fasciculus (SLF)

while the white region shows the junction of the corpus callosum

(CC) and the CST. While the high resolution dataset is noisier than

its lower resolution counterpart, the highlighted crossings regions

are well recovered by the denoising algorithms and thus offer an

improvement in anatomical details over the lower spatial resolu-

tion dataset. We also see in the yellow box that the NLSAM de-

noised dataset recovers crossings extending from the CC which are

almost absent in the compared datasets. 

Fig. 7 shows the PSNR and SSIM for the SNR 10 (stationary

noise) and SNR 15 (spatially varying noise) synthetic datasets. The

LPCA algorithm performs best in term of PSNR on the Rician noise

case, but attains a lower score for nc- χ noisy datasets. The same

trend is seen for AONLM and msPOAS algorithms, where the SNR

15 nc- χ case is the hardest test case. In contrast, our NLSAM tech-

nique is above 30 dB for the PSNR and 0.9 for the SSIM in most

cases, with a relatively stable performance amongst the majority
f tested cases. We also note that even though msPOAS is made to

djust itself to nc- χ noise, the fact that the algorithm does not ac-

ount for the intensity bias makes the perceptual metrics drop for

he nc- χ noise cases. 

.2. Bias introduced in the FA 

As shown by the FA difference map on Fig. 8 , our NLSAM

ethod commits a small FA error locally with a smaller maxi-

um error than the compared methods. Voxelwise underestima-

ion is denoted in blue and overestimation in red, where white

eans the computed value is close to the expected value. The

oisy data largely overestimates the FA values for the synthetic

atasets, while other denoising methods underestimate the real FA

alue most of the time. On the b10 0 0 datasets, NLSAM has the

mallest spread of FA error. The effect of stabilizing the data prior

o denoising can also be seen by the stable FA median error com-

itted by NLSAM across all noise types. For the b30 0 0 datasets,

he need to correct the intensity bias caused by the noise becomes

ore important, as seen by the increased error in underestimating

he correct FA value for most methods. For the spatially varying

ician noise case, our method commits the lowest overestimation,

s opposed to AONLM and LPCA, which are developed for this par-

icular noise case. It is also important to note that in contrast to

he other methods, msPOAS does not explicitly correct for the in-

ensity bias by design, but rather leaves this correction to subse-

uent processing steps. The SNR 15 nc- χ noise case is where all

he methods make the biggest error, as they reduce the variance
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Fig. 7. PSNR and SSIM metrics for the SNR 10 stationary and SNR 15 spatially variable noise cases datasets. All methods can correct the stationary and spatially varying 

Rician noise case to some extent while only our NLSAM algorithm has the best performance for the nc- χ noise case, especially for the spatially varying noise case. 
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ut still suffer from a large bias in FA. Overall, our method restores

he value of the FA for large bundles more accurately. We also see

hat most methods make their largest error near the partial vol-

me ball mimicking cerebrospinal fluid (CSF). 

.3. Impact on angular and discrete number of compartments (DNC) 

rror 

We now study the angular error and the mean relative error

n the discrete number of compartments (DNC) ( Paquette et al.,

014; Daducci et al., 2014 ). The mean relative discrete number of

ompartments error is defined as DNC i = 100 × | P i true 
− P i est 

| /P i true 

or voxel i , P i true 
and P i est 

is the number of crossings respectively

ound on the noiseless dataset and on the compared dataset. All

etrics were computed on the voxels containing at least two

rossings fibers on the noiseless dataset shown previously in

ig. 5 . 

Fig. 9 shows the distribution of the angular error and of the

NC error found in the region studied in addition to the mean an-

ular error. All of the denoising algorithms have a lower median

nd mean angular error than the noisy datasets. In addition, the

LSAM denoised datasets have an almost equal or lower angular

rror than the other denoising methods, but with a lower maxi-

um error most of the time as shown by the smaller whiskers.

or the b10 0 0 dataset DNC error, all three of AONLM, LPCA and

LSAM improve on the noisy dataset for the Rician noise case

s they are devised for this kind of data. LPCA also has a better

erformance than the other two for the spatially varying Rician

oise case, while NLSAM has a lower mean DNC error for both of

he nc- χ noise case. The effect of the intensity bias is also seen

n msPOAS, where the DNC error is always lower than the noisy

ataset, but also higher than all the other methods which take

nto account the intensity bias. The b30 0 0 dataset is much harder,
here no method seems to have a clear advantage in all cases over

he others. One interesting thing to note is that the noisy dataset

as a low DNC error for both of the Rician noise case, but the con-

dence interval indicates it is in the same range as the denoised

atasets. 

.4. Impact on tractography 

We now show how denoising techniques impact tractography

y evaluating the number of valid bundles (VB), invalid bundles

IB) ( Côté et al., 2013 ) and the valid connection to connection ratio

VCCR) ( Girard et al., 2014 ) found by the tracking algorithm. A valid

undle is defined as connecting two ROIs in the ground truth data

hile an invalid bundle is a connection made between two ROIs

hich is not supported by the ground truth data. The valid connec-

ion to connection ratio is the total of valid connections (VC) over

he sum of valid and invalid connections (IC), i.e. V C C R = 

VC 
VC+ IC . A

ood denoising algorithm should find a high number of valid bun-

les, a low number of invalid bundles and a high percentage of

alid connection to connection ratio. 

eterministic tractography on the synthetic phantom. Table 2 shows

he results of deterministic tractography on the SNR 10, 15 and 20

ynthetic datasets for both b10 0 0 and b30 0 0. The noiseless b10 0 0

ataset had 25/27 valid bundles, 55 invalid bundles and a valid

onnection to connection ratio of 65% and the noiseless b30 0 0

ataset had 27/27 valid bundles, 40 invalid bundles and a valid

onnection to connection ratio of 68%. One of the first thing to

ote is that even though the noisy dataset always has a high num-

er of valid bundles, it is at the price of a huge number of in-

alid bundles. Moreover, the valid connection to connection ratio

s systematically lower for the SNR 10 datasets than any of the de-

oising methods. This indicates that only looking at the number
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Fig. 8. Boxplot of the difference in FA for the synthetic datasets at b10 0 0 (left) and b30 0 0 (right). The whiskers show 1.5 times the interquartile range (1.5 x IQR), where 

outliers are plotted individually. The bars represent the first quantile, the median and the third quartile. No method performs well on the nc- χ b30 0 0 spatially varying 

noise case, which is the hardest test case. NLSAM overall produces less error or is equal to the other methods, but has a lower bias in the FA error along noise type. 

FA difference for the phantomas stationary nc- χ SNR 10 and spatially varying Rician SNR 15 b10 0 0 datasets. Blue values denote underestimation while red values show 

overestimation of the FA. Top : Stationary nc- χ noise. NLSAM is less biased than the other methods in large, homogeneous regions, while the compared methods produces 

more underestimation for the nc- χ case. Bottom : Spatially variable Rician noise. While being a harder case than the SNR 10 dataset since it varies from SNR 5 to 15, all 

methods adapt themselves to some extent to the varying noise profile. 
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of valid and invalid bundles does not show how many streamlines

reached each region since only at least one streamline is required

to make a connection, thus counting as a valid bundle. Another ob-

servation is that denoising helps controlling the number of invalid

bundles and gives a better valid connection to connection ratio in

most cases over the noisy data. For the SNR 15 cases, NLSAM has

the highest number of valid bundles in almost all cases, but at the

price of a larger number of invalid bundles at lower SNR. Another

interesting trend is the tradeoff between valid bundles and invalid

bundles : AONLM and LPCA both manage to get a lower number

of invalid bundles, but also tend to have a lower number of valid

bundles than msPOAS or NLSAM overall. 

For the SNR 20 stationary noise cases, all methods are close

in valid bundles with some difference in the number of invalid

bundles. This shows that tractography could benefit from variable

tracking parameters instead of fixed values depending on the pre-

ferred trade-off for the task at hand ( Chamberland et al., 2014 ). 

Tracking the real data. We now look at tractography on the in-vivo

high spatial resolution dataset and its clinical spatial resolution

counterpart of the same subject previously shown on Fig. 6 . The

high spatial resolution dataset at 1.2 mm isotropic has 40 unique
radient directions while the lower spatial resolution dataset at

.8 mm isotropic has 64 unique gradient directions for a compara-

le acquisition time. The background is masked by the scanner and

as a spatially varying Rician noise profile due to the SENSE recon-

truction, which is the specific noise case covered by the AONLM

nd LPCA denoising algorithm. We use the deterministic tractogra-

hy algorithm from ( Girard et al., 2014 ), which considers anatomi-

al constraints for more anatomically plausible tractography. Fig. 10

hows from top to bottom the left arcuate fasciculus (AF), the in-

erior fronto-occipital fasciculus (IFOF) and the corticospinal tract

CST) as dissected automatically by the Tract querier ( Wassermann

t al., 2016 ). The noisy 1.2 mm AF stops prematurely in the frontal

art of the bundle, while the 1.8 mm noisy AF misses the tem-

oral lobe. In contrast, the streamlines from the NLSAM denoised

undle go further into the temporal lobe. Also note how the right

FOF has a better coverage for all the 1.2 mm datasets and more

anning near the front of the brain than the noisy 1.8 mm dataset.

e also see that the left IFOF is thinner than its right counterpart,

ut most of the bundles tracked from the denoised datasets pro-

uces less spurious tracks while keeping the anatomical details.

he LPCA denoised IFOF stops prematurely for the left posterior

art of the bundle, possibly because of a lost crossing region along
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Fig. 9. The mean relative percentage of DNC error for the synthetic datasets. The bar represents the 95% confidence interval on the mean as computed by bootstrapping. The 

DNC error is the number of peaks found in excess or missing in each voxel with respect to the noiseless dataset. Boxplot of the angular error in degrees on the synthetic 

datasets, where the dot represents the mean angular error. A low angular error means that the extracted fODFs peaks are aligned with the noiseless dataset extracted peaks. 

Table 2 

Tractometer results for the deterministic tracking. 

Stationary noise Spatially variable noise 

SNR 10 SNR 20 SNR 15 SNR 20 

Method/Noise VB IB VCCR VB IB VCCR VB IB VCCR VB IB VCCR 

AONLM b10 0 0 Rician 25 78 49% 25 75 51% 23 91 45% 25 89 50% 

b30 0 0 nc- χ 25 88 50% 26 88 52% 21 111 44% 23 93 47% 

Rician 25 69 52% 25 60 56% 24 85 50% 26 72 52% 

b10 0 0 nc- χ 25 78 55% 26 67 55% 20 95 48% 22 78 54% 

LPCA Rician 23 61 49% 25 64 54% 16 36 42% 18 38 45% 

b30 0 0 nc- χ 22 66 50% 24 70 54% 16 46 51% 20 56 52% 

Rician 23 44 47% 26 46 53% 17 37 42% 19 41 45% 

b10 0 0 nc- χ 20 42 58% 25 57 53% 18 40 55% 20 56 55% 

msPOAS Rician 25 101 49% 25 89 52% 23 129 44% 25 118 46% 

b30 0 0 nc- χ 23 121 40% 25 95 54% 20 131 35% 25 141 41% 

Rician 26 108 53% 26 74 58% 25 88 52% 25 93 49% 

b10 0 0 nc- χ 17 84 37% 25 84 57% 22 96 33% 23 94 47% 

NLSAM Rician 25 90 49% 26 96 54% 25 127 42% 25 114 45% 

b30 0 0 nc- χ 25 120 48% 25 90 54% 25 170 28% 26 144 43% 

Rician 25 92 50% 26 67 54% 25 108 43% 25 97 47% 

b10 0 0 nc- χ 23 100 45% 24 82 53% 23 173 29% 25 131 37% 

Noisy Rician 25 138 41% 25 107 53% 25 159 36% 25 134 42% 

b30 0 0 nc- χ 25 166 34% 26 119 49% 17 120 9% 25 209 24% 

Rician 25 116 46% 27 87 54% 25 160 36% 25 149 42% 

nc- χ 25 182 36% 26 103 53% 18 124 9% 25 210 24% 

Noiseless VB IC VCCR 

b10 0 0 25 55 65% 

b30 0 0 27 40 68% 
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Fig. 10. Deterministic tractography for selected bundles on the in-vivo dataset. We also show a T1 weighted image aligned in the diffusion space for anatomical reference. 

Top : The left arcuate fasciculus. Note how the denoised NLSAM arcuate fasciculus goes further into the frontal and temporal region than both of its noisy 1.2 and 1.8 mm 

counterparts. Middle : The inferior fronto-occipital fasciculus. The AONLM denoised bundle has a denser part for the right IFOF while the LPCA bundle stops prematurely for 

the left IFOF, possibly due to a missing crossing along the bundle. Bottom : The corticospinal tract. We see that NLSAM recovers the commissural fibers in the pons from 

the noisy 1.2 mm dataset, which are not even present on the noisy 1.8 mm dataset nor on the other denoising algorithm’s bundles. NLSAM also recovers more fanning to 

both sides of the brain than all the compared methods. 
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the fibers during the denoising process. The CST does show some

commissural fibers through the pons in the noisy 1.8 mm dataset,

while they are present but look like spurious fibers on the noisy

1.2 mm dataset. AONLM can recover some of those commissural

fibers, while NLSAM is the only algorithm which recovers them in

addition to richer fanning near both sides of the motor cortex. 

5. Discussion 

5.1. Enhancing the raw data 

We quantitatively showed in Fig. 7 that denoising restores per-

ceptual information when compared to the unprocessed noisy

data. Taking the spatially varying aspect and the particular na-

ture of the noise into account is also important since modern

scanners implement parallel imaging which changes the nature of

the noise ( Dietrich et al., 2008 ), leading to a lower performance

for denoising methods not fully taking into account the intro-

duced bias. Fig. 6 shows that this is also qualitatively true for in-

vivo data, where denoising visually restores information in regions

heavily corrupted by noise. While perceptual metrics might indi-

cate the performance of an algorithm, one must remember that

the relative signal difference is of interest in diffusion MRI, which

is not fully captured by perceptual metrics like the PSNR or the

SSIM. One is also usually interested in diffusion MRI metrics as

opposed to perceptual information brought by the raw diffusion

MRI datasets. AONLM is able to remove most of the noise, but

still shows some residuals near the inferior part of the brain, pos-

sibly due to only considering the 3D volumes separately, which

means that the algorithm cannot benefit from the additional an-

gular information brought by diffusion MRI. LPCA can restore vi-

sual information and sharp edges from the noisy dataset, but the

region in the pons, where the noise level is higher and cross-

ing fibers are more complex, also seems to be piecewise constant.

This might arise from the fact that the algorithm uses all of the

DWIs at once for its PCA decomposition step and treats all inten-
ities at the same time in the noise removal step. As for NLSAM,

he algorithm only works in the local angular domain, thus ex-

loiting similar contrast and redundant edge structure under dif-

erent noise realization. msPOAS also uses a similar idea, where

he angular similarity is weighted according to the Kullback-Leibler

ivergence to control the importance of dissimilar intensities in

he denoising process. Nevertheless, these perceptual metrics show

hat denoising improves upon the noisy data, but one should

lso look at metrics derived from the studied object of interest

.e. tensor or fODF derived metrics, since high perceptual met-

ics might also reflect blurring of diffusion features, which is the

ain interest in this type of acquisition rather than the perceived

uality. 

.2. Impact of the stabilization algorithm on the compared denoising 

ethods 

Fig. 11 shows the FA map when the compared denoising algo-

ithm are applied on the stabilized data with the algorithm of Koay

t al. (2009a) . For this experiment, we consider a voxel as being

egenerated if its FA is exactly 0. The first thing to note is that

he algorithm only reprojects the noisy data on plausible Gaus-

ian distributed values and does not do any denoising. While we

sed here the algorithm of Koay et al. (2009a) to correct the noise

ias, another interesting approach consist of producing real-valued

atasets as shown in ( Eichner et al., 2015 ). This approach does

ot require estimation of σ 2 or N , but instead use information

ontained in the phase of complex-valued acquisitions. Secondly,

ll of the other compared denoising algorithms produce some in-

alid voxels on the raw dataset, while having less degenerated

oxels on the stabilized dataset as shown in Table 3 . Neverthe-

ess, only our NLSAM algorithm does not produce any degener-

ted FA voxel on the in-vivo dataset. As tractography might rely

n a thresholded FA mask ( Chamberland et al., 2014 ), any missing

hite matter voxel will end the tractography early and produce

natomically invalid tractography. In the same way, computing FA
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Fig. 11. Effect of the stabilization algorithm on the compared methods. The top row shows an axial slice of the in-vivo FA map computed on the stabilized dataset, where 

some voxels are degenerated. The bottom row shows their location on a binary brain mask. As shown in Table 3 , all methods produce degenerated FA voxels on both the 

regular and stabilized data, with the sole exception of NLSAM. 

Table 3 

Number of degenerated FA voxels inside a brain mask and a white matter mask for the in-vivo dataset. All methods were compared 

with their built-in noise estimation on the stabilized version, but without any additional noise correction factor. The percentage of 

degenerated voxels is indicated in parenthesis for each mask, where a voxel is considered degenerated if its FA value is exactly 0. 

AONLM LPCA msPOAS NLSAM Noisy Mask 

Built-in Brain mask 83 314 (10.1%) 10 526 (1.3%) 84 319 (10.2%) � 5 994 (0.7%) 823 068 (100%) 

WM mask 29 664 (5.1%) 1 298 (0.2%) 16 665 (2.9%) � 1 769 (0.3%) 578 418 (100%) 

Stabilization Brain mask 10 052 (1.2%) 15 750 (1.9%) 29 377 (3.6%) 0 (0%) 9 395 (3.6%) 823 068 (100%) 

WM mask 404 (0.1%) 1 468 (0.3%) 4 267 (0.7%) 0 (0%) 2 850 (0.5%) 578 418 (100%) 
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ased statistics in search of group differences inside a white mat-

er mask might lead to erroneous conclusions when degenerated

oxels are present. This undesirable side effect should be avoided

hen possible by choosing a method producing a low number of

nvalid voxels, such as NLSAM. 

.3. Reducing the diffusion metrics bias 

Fig. 8 shows that knowing where errors are committed gives a

etter view of how denoising improves upon the noisy data. We

ee that our NLSAM algorithm actually has a smaller maximum er-

or in underestimating the FA most of the time while other meth-

ds both over and underestimate the real FA value and make larger

rrors near CSF or at borders with the background. This could in-

icate that they are subject to problems with partial volume effect,

hich seems less important for NLSAM. 

While stabilizing the data alleviates the FA underestimation

roblem in most cases, it also helps to reduce the number of

egenerated voxels in the in-vivo data as shown in Fig. 11 . Both

ONLM and msPOAS produce less degenerated FA voxels on the

tabilized dataset as shown in Table 3 , while NLSAM does not pro-

uce any degenerated voxel. In contrast, the noisy data and LPCA

ave an increased number of degenerated FA voxels, which might

e caused by the diffusion signal being near the noise floor, thus

roducing a flat profile which is not properly recovered in this

ase. Reducing the FA bias and avoiding degenerated voxels by

ncluding denoising in the processing pipeline could improve the

tatistical analysis in along-tract metrics ( Colby et al., 2012 ) when

ooking for group differences. 
.4. Restoring the coherence of local models 

The CSD algorithm relies on the estimation of the fiber response

unction (frf), which in turn relies on the diffusion tensor. To esti-

ate the frf, one must select voxels containing only a single fiber

opulation. One way to do this is to estimate it from voxels with

 high FA, usually with FA > 0.7 ( Tournier et al., 2007; Descoteaux

t al., 2009 ). We observed that for the SNR 10 dataset with nc- χ
oise, the noisy dataset, AONLM and LPCA could not find as much

ingle fiber voxels based on the FA threshold method as msPOAS or

LSAM since their reconstructed tensors have an inherently lower

A. This in turns impacts deconvolution since the estimates used

or the deconvolution kernel are less stable, and lowering the FA

hreshold too much might violates the single fiber assumption,

hich is crucial for the CSD algorithm. One way to circumvent this

ould be by using the method of ( Tax et al., 2014 ), which is based

n a peak amplitude criterion instead of an FA threshold to iden-

ify single fiber voxels. 

Fig. 9 shows that msPOAS and NLSAM have larger angular

rror than AONLM or LPCA, but this does not seem to impact

uch the number of valid bundles found by deterministic trac-

ography. Indeed, the noisy data has the largest angular error

n all cases, but still has a high number of valid bundles in

ost cases. This also suggests that a large overestimation or un-

erestimation of fiber crossings (as reflected by the DNC error)

as a higher impact on tractography. Both LPCA and msPOAS

ave a lower number of valid bundles than AONLM or NLSAM,

hich both have a rather symmetric under and over estimation

f the number of peaks. This means that an overall estimation or
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underestimation of the number of crossings bias tractography, as it

tends to follow false crossings or stops prematurely due to a lack

of crossings, while a distributed error is not skewed toward these

effects. 

In Fig. 6 , we see that denoising restores coherence in regions

of crossing fibers that were lost on the noisy dataset or not even

present in the lower spatial resolution 1.8 mm dataset due to a

smaller voxel size. We also see that NLSAM restores more coher-

ent crossings than the other denoising methods in the junction of

the SLF and the CST, whereas the noisy dataset only shows in-

coherent crossings. This actually enables tractography algorithms

to reconstructs tracts which are in agreement with the expected

anatomy. In the same amount of acquisition time, one can thus

acquire higher spatial resolution DWIs and get better angular in-

formation by post-processing the acquired data with denoising. 

5.5. Limiting spurious fibers from tractography 

We studied the impact of denoising techniques on determinis-

tic tractography on a synthetic dataset in Section 4.4 . One often

has to choose between having a high number of valid bundles and

invalid bundles, or having less valid bundles and at the same time

reducing the amount of invalid bundles. The noisy dataset always

reaches a high number of valid bundles, but also at the price of

having the highest number of invalid bundles most of the time.

Our NLSAM algorithm shows a good balance between the number

of valid and invalid bundles at low SNR, especially for the spatially

varying noise case. This is always a tradeoff that one has to choose

as seen in the ISMRM 2015 tractography challenge 9 . 

For example, the LPCA algorithm has always a low number of

invalid bundles, but also the lowest number of valid bundles for

the spatially varying noise case. In opposition, NLSAM has a high

number of valid bundles, but also a high number of invalid bundles

most of the time. 

Regarding the deterministic tractography, changing the step-

size or the maximum curving angle would give different results

in terms of connectivity metrics, indicating that the tractography

algorithm and chosen tractography parameters have a non negli-

gible influence on the end results ( Chamberland et al., 2014; Gi-

rard et al., 2014 ). We also used a seeding strategy of 100 seeds per

voxel from the ROIs at each bundles endpoints to ensure a max-

imal number of valid bundles, which promotes a high number of

valid bundles for each dataset. This shows that the missed bundles

are hard to recover or not supported by the data itself, as opposed

to being missed because of inadequate seeding ( Côté et al., 2013 ).

On the other hand, this can artificially increase the number of in-

valid bundles, which could be reduced by reducing the number of

seeds per voxel. Since automatic tractography pruning techniques

such as ( Côté et al., 2015 ) might help reduce the number of spu-

rious tracks, this would indicate that having a higher number of

valid bundles would be preferable since invalid bundles could be

potentially removed afterward. In contrast, a low number of valid

bundles cannot be circumvented with further postprocessing. Nev-

ertheless, denoising increases the valid connection to connection

ratio and reduces the number of invalid bundles, thus bringing

confidence in the validity of the tractography results when com-

pared to the noisy datasets. 

For the in-vivo dataset tracking shown in Fig. 10 , we see that

tractography benefits from higher spatial resolution acquisitions,

but that the produced tracts are slightly more noisy. Combining

the high spatial resolution, highly noisy dataset with a denoising

algorithm at the beginning of the processing pipeline gives more

anatomically plausible tracts in the end. The AF and CST produced
9 http://www.tractometer.org/ismrm _ 2015 _ challenge/ 

j  

w  

n  
y the NLSAM denoised dataset are both more anatomically plausi-

le than their noisy or lower spatial resolution counterpart, which

ave less fanning fibers in the case of the CST. This shows that

igh resolution DWIs exhibits more anatomical information thanks

o the smaller voxel size which might not be easily discernible at

 lower spatial resolution ( Sotiropoulos et al., 2013 ). Acquiring at

igher spatial resolution could also help resolve complicated fiber

onfigurations such as crossings fibers from fanning fibers or dis-

ntangle small structures like the optic chiasm ( Roebroeck et al.,

008 ), which is not possible at lower spatial resolution ( Jones

t al., 2013; Calabrese et al., 2014 ). 

.6. Other methods for high spatial resolution acquisitions 

We have shown in Fig. 6 that high spatial resolution acquisi-

ions which are noisy at first can reveal improved anatomical de-

ails when they are subsequently denoised. This indeed suggests

hat high resolution acquisition can now be acquired on clinical

canners. Recently, other algorithms enabling a high spatial reso-

ution at the acquisition level have been suggested ( Scherrer et al.,

015; Ning et al., 2016 ). These methods both rely on smartly fusing

he (complementary) data of multiple acquisitions acquired at a

ower spatial resolution to obtain a single high resolution volume.

hile the approach we suggest here is to acquire a single volume

sing a standard sequence, both techniques are fundamentally ex-

loiting different aspects to increase the available spatial resolu-

ion. As such, it would be possible to combine our denoising al-

orithm with the reconstruction algorithms presented in ( Scherrer

t al., 2015; Ning et al., 2016 ). 

.7. Current limitations and possible improvements 

Although most models assume a Rician or nc- χ noise distribu-

ion, this does not take into account the noise correlation between

ach coils or the effect of acceleration techniques that subsam-

le the k-space ( Aja-Fernández et al., 2014 ). The development of

orrection factors for existing algorithms relies on computing the

ffective values for the noise standard deviation σ and the num-

er of degrees of freedom of the nc- χ distribution, which is ex-

ected to be smaller than 2N. These values can be used to take

nto account the correlation introduced between the coils in paral-

el imaging acquisitions ( Brion et al., 2013 ). To consider the fact

hat the noise distribution nature might vary spatially in addi-

ion to the noise variance, one can use a priori information ob-

ained from the scanner through the SENSE sensitivity maps or

he GRAPPA weights and need to estimate the correlation between

ach of the receiver coils. We could explicitly add such a correc-

ion to our algorithm since we work locally with the stabiliza-

ion algorithm, Eqs. (1) and (4) . Using multiband acceleration also

odifies the noise properties due to the introduced aliasing, which

urther strengthen the idea that spatially adaptive denoising algo-

ithms should be used on modern scanners and sequences ( Ugurbil

t al., 2013 ). Nevertheless, obtaining the needed map for a SENSE

econstruction or the required GRAPPA weights might not be easily

easible in a clinical setting. We also intend to revisit the order in

hich preprocessing algorithms (motion correction, eddy currents

orrection, distortions correction) should be applied since these

teps require interpolation, which could also introduce spatial cor-

elation in the noise profile. This also makes the noise distribution

eviate slightly from its theoretical distribution, where parameters

ary spatially instead of being fixed constants for the whole vol-

me ( Aja-Fernández et al., 2014 ). Nevertheless, we have observed

xperimentally that our NLSAM algorithm is robust to small sub-

ect motion thanks to the local neighborhood processing. In case

here artifacts (such as epi distortions) might undermine the de-

oising process, one can first correct for these artifacts using a

http://www.tractometer.org/ismrm_2015_challenge/
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Table 4 

Required time and RAM usage for the compared denoising algorithms on the 

b10 0 0 SNR 10 dataset with stationary Rician noise. 

AONLM LPCA msPOAS NLSAM NLSAM fast 

Time (mins) 22.2 3.7 4.0 37.1 9.8 

RAM usage (MB) 552 640 1543 606 412 
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earest neighbor interpolation, which should not modify the noise

istribution. Subsequent corrections can then be performed after

enoising using other kinds of interpolation as needed. 

While developing the NLSAM algorithm, we found that using

 bigger 3D patchsize did not significantly improve the denoising

uality, while augmenting both computing time and memory re-

uirements. Our implementation also allows one create the small-

st subset of angular neighbors covering all DWIs through a greedy

et cover algorithm. This option (named ”NLSAM fast” in Table 4 )

eads to a speedup of 3 to 4 times, but at the cost of slightly re-

ucing the denoising performance since some DWIs might be de-

oised only once instead of multiple times. We used the fully cov-

red version for our experiments, which were run on a machine

unning Ubuntu Linux 12.04 with a quad core Intel i7 930 at 2.8

Hz and 18 GB of RAM. Table 4 reports the runtime of the various

lgorithms in minutes and their RAM usage. While the comput-

ng time required by NLSAM is larger than the other methods, our

ython implementation is fairly unoptimized and could be sped up

o competitive runtimes by various code optimizations or lowering

he maximum number of iterations in Eq. (4) . 

. Conclusion 

In this paper, we introduced a new denoising method, the Non

ocal Spatial and Angular Matching (NLSAM), which is specifically

esigned to take advantage of diffusion MRI data. Our method

s based on (1) Correcting the spatially varying Rician and nc- χ
oise bias (2) Finding similar DWIs through angular neighbors to

romote sparsity (3) Iteratively denoise similar patches and their

eighbors locally with dictionary learning, where the local variance

s used as an upper bound on the � 2 reconstruction error. We ex-

ensively compared quantitatively our new method against three

ther state-of-the-art denoising methods on a synthetic phantom

nd qualitatively on an in-vivo high resolution dataset. We also

howed that taking into account both the effect of spatially vary-

ng noise and non-Gaussian distributed noise is crucial in order to

enoise effectively the DWIs. Our NLSAM algorithm is freely avail-

ble 10 , restores perceptual information, removes the noise bias in

ommon diffusion metrics and produces more anatomically plausi-

le tractography on a high spatial resolution in-vivo dataset when

ompared to a lower spatial resolution acquisition of the same

ubject. 

Since our NLSAM algorithm can be used on any already ac-

uired dataset and does not add any acquisition time, this shows

hat denoising the data should be a pre-processing part of every

ipeline, just like any other correction method that is commonly

pplied for artifacts removal. With that in mind, the diffusion MRI

ommunity could aim for higher spatial resolution DWIs, without

equiring the use of costly new hardware or complicated acqui-

ition schemes. This could in turn reveal new anatomical details,

hich are not achievable at the spatial resolution currently used

n diffusion MRI. 
10 https://github.com/samuelstjean/nlsam 
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ppendix A. The NLSAM Algorithm 

This appendix outlines the NLSAM algorithm as pseudo code.

he original implementation in Python is freely available at https://

ithub.com/samuelstjean/nlsam . 

Algorithm 1: The proposed NLSAM denoising algorithm. 

Data : 4D dMRI data, an = number of angular neighbors, ps = 

spatial patch size, N = Number of coils, max _ iter = 40 

Result : Denoised data with NLSAM 

Step 1 ; 

Find σG with either PIESNO or Eq. (3) ; 

Apply noise stabilization with σG and N coils; 

foreach DWI in dMRI data do 

Step 2 ; 

Find the closest an angular neighbors; 

Create 4D block with b0, DWI and its an neighbors; 

Extract all overlapping patches of size (ps, ps, ps ) ; 

Step 3 ; 

Apply Eq. (1) to find D ; 

Iterate Eq. (4) to find α until convergence or max _ iter is 

reached; 

Average overlapping patches based on sparsity with 

Eq. (5) ; 

Return to original shape; 

end 

foreach Denoised DWI in dMRI data do 

Average all Denoised DWI representations; 

end 
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