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Traumatic brain injuries (TBI) often involve vascular dys-
function that leads to long-term alterations in physiological
and cognitive functions of the brain. Indeed, all the cells
that form blood vessels and that are involved in maintain-
ing their proper function can be altered by TBI. This
Review focuses on the different types of cerebrovascular
dysfunction that occur after TBI, including cerebral blood
flow alterations, autoregulation impairments, subarachnoid
hemorrhage, vasospasms, blood–brain barrier disruption,
and edema formation. We also discuss the mechanisms
that mediate these dysfunctions, focusing on the cellular
components of cerebral blood vessels (endothelial cells,
smooth muscle cells, astrocytes, pericytes, perivascular
nerves) and their known and potential roles in the second-
ary injury cascade. VC 2016 Wiley Periodicals, Inc.
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During the last decades, researchers have focused on
neurocentric dysfunctions after acute brain injuries, with an
emphasis on the molecular mechanisms involved in early
cell death. Traumatic brain injury (TBI) research has moved
from acute vascular dysfunction to an increasing focus on
neuronal death. As noted in various review articles (Zhang
et al., 2012; Jullienne and Badaut, 2013), this strategy has
failed to transfer new therapeutic compounds from research
tools to clinical therapies. It is within this context that in
2002 the NIH and NINDS hosted a workshop that sug-
gested that the neurovascular unit (NVU) should be consid-
ered, as well as a larger microsystem comprising vessels and
the associated glial cells, as the functional target of injury
(Grotta et al., 2002; Zhang et al., 2012). A dysfunctional
NVU has recently been proposed to be involved in the
mechanisms underlying neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD; Iadecola, 2004; Zlokovic,
2011). Interestingly, TBI is frequently associated with higher
long-term risk for AD, and vascular dysfunction has been

suggested to be involved in the development of AD (Johnson
et al., 2010). Therefore, the NVU and vascular malfunc-
tion could be involved in poor cognitive outcomes after
TBI. This Review emphasizes the importance of the
cerebrovascular dysfunction and related molecular mecha-
nisms post-TBI.

TBI: CLINICAL DEFINITION

TBI contributes to more than 30% of all injury-related
deaths in the United States (Faul et al., 2010) and repre-
sents in excess of 75,000 deaths each year in Europe
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*Correspondence to: J�erôme Badaut, PhD, CNRS UMR 5287, Bordeaux

University, 146 rue L�eo Saignat, 33076 Bordeaux cedex, France.

E-mail: jerome.badaut@u-bordeaux.fr

Received 27 December 2015; Revised 11 February 2016; Accepted 28

February 2016

Published online 27 April 2016 in Wiley Online Library

(wileyonlinelibrary.com). DOI: 10.1002/jnr.23732

VC 2016 Wiley Periodicals, Inc.

Journal of Neuroscience Research 94:609–622 (2016)



(Maas et al., 2015). TBI is defined as a brain lesion caused
by a direct or indirect external mechanical impact such as
the penetration of a projectile, or by blast waves, inducing
the disruption of the normal structure and function of
the brain. The most frequent causes of TBI among the
general population are falls (35%), motor vehicle and
traffic-related accidents (17%), being struck by or against
an object (16%), and assaults (10%; Faul et al., 2010).
Although TBI affects all ages, pediatric and elderly popu-
lations are more vulnerable than adults (Faul et al., 2010).
Some populations, including military personnel and res-
cue workers, are more likely to endure blast waves, result-
ing in a higher risk for TBI. Finally, sports-related TBI is
a public health concern because of the repetitive nature of
these injuries and the fact that they are often unreported.

Three main levels of TBI severity can be defined clini-
cally, based on the Glasgow coma scale (a three- to 15-point
scale used to assess the patient’s level of consciousness and
neurologic function) or on the duration of the loss of con-
sciousness. Most TBI (75%) is mild, and this is also known
as concussion. There is no skull fracture and few or minor
changes are observed on CT scan and/or standard MRI
(Ashwal et al., 2014). For moderate and severe TBI, the
presence of bleeding is frequently observed, especially in the
case of blast injuries (Taber et al., 2006; Maas et al., 2008).

There are two distinct injury phases in TBI. The pri-
mary acute event is often followed by a secondary injury
cascade that includes glutamatergic excitotoxicity, calcium
overload, and vascular dysfunction. These secondary inju-
ries usually last for several months or even years, resulting
in a pattern of “chronic brain disease” (Johnson et al.,
2010; Pop and Badaut, 2011; Smith et al., 2013). Several
clinical studies have shown that after TBI and the acute
period, there are long-lasting behavioral dysfunctions,
including cognitive decline or emergence of psychiatric
disorders remote from the initial injury (Smith et al., 2013;
for a more complete review of these deficits see Obenaus,
2015). For example, even if patients recover well from
physical problems, 30% of adults report altered cognitive
function, such as memory and concentration deficits, up to
3 months after a mild TBI (Ponsford et al., 2011). It has
also been shown that a TBI occurring early in life can lead
to a higher risk of mortality, independently of its severity
(McMillan and Teasdale, 2007; Himanen et al., 2011).
Repeated TBIs are known as a risk factor for dementia,
particularly when related to sport injuries. Indeed,
repeated TBI is associated with long-term cognitive
impairment, as reported for retired athletes (Guskiewicz
et al., 2005; Lakhan and Kirchgessner, 2012).

TBI is a massive health burden worldwide, not only
because of the cognitive and psychological impairments but
also because of the economic costs that include medical
expenses as well as indirect expenses such as losses of pro-
ductivity (Corso et al., 2006; Gustavsson et al., 2011).
Despite recent advances, comprehensive research on TBI
pathophysiology is marginal compared with other acute
injuries, such as stroke, or other neurodegenerative diseases.
The numerous veterans from the Iraq and Afghanistan wars
and the increased public awareness regarding sports-related

concussion injuries have led to an increase in research to
understand the pathophysiology of this heterogeneous dis-
order to develop better treatments. Various animal models,
from rodents to larger animals, have been developed in
order to obtain a better understanding of the cellular and
molecular mechanisms (Prins and Hovda, 2003; Obenaus,
2012; Petraglia et al., 2014). The variety of preclinical mod-
els reflects the variety of severity and heterogeneity of clini-
cal TBI. However, the definition of degree of TBI severity
in different animal models is controversial and remains
poorly defined. This is a critical point because the cellular
and molecular responses to the injury depend not only on
its severity but also on the location of the impact. Moreover,
the age of the animals is important because the outcome is
more severe for younger patients (McMillan and Teasdale,
2007; Himanen et al., 2011; Pop and Badaut, 2011). How-
ever, this is not the focus of our Review, and we refer the
reader to other reviews addressing this question (Prins and
Hovda, 2003; Obenaus, 2012; Petraglia et al., 2014). It is
crucial to keep in mind that most preclinical TBI models
exhibit vascular dysfunction ranging from blood–brain bar-
rier (BBB) disruption to hemorrhage (Golding, 2002;
DeWitt and Prough, 2003; Pop and Badaut, 2011). A
recent review article illustrates the importance of the vascu-
lar responses and changes in morphology and perfusion after
TBI (Kenney et al., 2015). The early vascular dysfunction
has been known for almost 2 decades, and the long-term
changes could be associated with premature aging of the
brain or emergence of brain dysfunction after TBI.

TBI AS A CEREBROVASCULAR INJURY:
CLINICAL EVIDENCE

Characteristics of the Brain Vasculature

Cerebral vessel morphology is composed of three dis-
tinct layers, each having unique roles. The innermost layer
is called the tunica intima and is composed of a single layer of
endothelial cells surrounded by a basement membrane. In
the case of capillaries, the basement membrane encloses
pericytes (Fig. 1). The layer around this first layer is called
the tunica media, which is the muscular portion of the vessel.
This medial layer is composed of vascular smooth muscle
cells (SMC), surrounded by a basement membrane. The
thickness of the smooth muscle layer is dependent on the
size of the vessel. Pial arteries generally have two or three
SMC layers, whereas penetrating arteries have only one or
two SMC per circumference. The penetrating arteries give
rise to arterioles that are composed of a single layer of SMC.
Then, in the capillaries, pericytes can replace SMC, even
though their density and distribution remain controversial.
Finally, the outermost layer of the cerebral blood vessels is
called the tunica adventitia. It is a strong layer composed of
connective tissue allowing the blood vessel to resist forces
acting on the vessel wall. The tunica adventitia contains
mostly collagen fibers, fibroblasts, and associated cells,
including terminal nerve fibers in pial arteries. However,
after the end of the Virchow-Robin space, the tunica
adventitia is almost absent, and the intraparenchymal
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arterioles are in direct contact with astrocyte endfeet
(Golding, 2002; Cipolla et al., 2004; Fig. 1).

Extra- and Intraparenchymal Blood Vessels

Pial vessels are located on the surface of the brain
and give rise to smaller arteries that penetrate into the
brain parenchyma with the Virchow-Robin space filled
by cerebrospinal fluid (CSF). These penetrating arteries
become intraparenchymal arterioles once the Virchow-
Robin space disappears and are almost completely sur-
rounded by astrocyte endfeet (Cipolla et al., 2004). Pial
and penetrating arteries present mostly an “extrinsic” neu-
rogenic control of the perfusion via a perivascular inner-
vation from the peripheral nervous system (Rennels and
Nelson, 1975).

Even though the myogenic regulation and the role
of vascular SMCs and endothelial cells in maintaining
cerebral perfusion are involved in the vascular tone, the
control of perfusion in intraparenchymal arterioles is also
influenced by “intrinsic” innervation coming from the
surrounding brain neuropil, including interneurons and
astrocytes (Cohen et al., 1996; Fig. 1). In fact, intraparen-
chymal arterioles have only one layer of vascular SMCs
and are completely covered by astrocytes endfeet on their

abluminal side. It has recently been well documented that
astrocytes have an important role in the regulation of cere-
bral blood flow (CBF; Attwell et al., 2010; Howarth,
2014; Filosa et al., 2015). Indeed, astrocytes have a unique
position within the NVU, where they contact synapses
with their processes as well as 99% of the blood vessel sur-
face (Filosa et al., 2015; Fig. 1). Therefore, by responding
to neuronal activity (buffering neurotransmitters and ions,
e.g., potassium), astrocytes can subsequently relay informa-
tion to blood vessels to ensure adequate blood supply to
areas with increased neuronal activity. This is blood flow–
metabolism coupling, a physiological response also termed
neurovascular coupling. Several studies, both in vitro (Mulli-
gan and MacVicar, 2004; Blanco et al., 2008; Gordon
et al., 2008) and in vivo (Winship et al., 2007; Lind et al.,
2013; Otsu et al., 2015) have shown that in response to
neuronal activation there is an increase in the intracellular
calcium concentration in astrocytes and a subsequent
release of vasoactive substances such as prostaglandin E2
and epoxyeicosatrienoic acids that induce vasodilation of
the blood vessels. Moreover, increases in astrocytic cal-
cium contribute to the production of other vasoactive sub-
stances such as nitric oxide (NO), glutamate, adenosine,
and adenosine triphosphate (ATP; Filosa et al., 2015). In
addition to the vasoactive substances, arachidonic acid is

Fig. 1. Morphology and characteristics of cerebral blood vessels. Cerebral blood vessels are formed by
three distinct layers, the tunica intima with endothelial cells and a basement membrane; the tunica
media with smooth muscle cells; and the tunica adventitia with collagen fibers, fibroblasts and associated
cells such as nerve fibers and astrocytes. Capillaries are formed with only a tunica intima with a basement
membrane enclosing pericytes. This figure was produced using Servier Medical Art (www.servier.
com). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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produced and released by astrocytes and can also diffuse to
the arteriole’s SMC, where it is metabolized to the vaso-
constrictor 20-hydroxyeicosatetraenoic acid (20-HETE;
Gebremedhin et al., 2000). Indeed, studies have shown
that, in addition to vasodilation, vasoconstriction of blood
vessels can be induced by astrocytic activation (Mulligan
and MacVicar, 2004; Metea and Newman, 2006; Blanco
et al., 2008; Gordon et al., 2008).

The ability of astrocytes to induce vasoconstriction
and vasodilation suggests that the balance of both vasodila-
tory and vasoconstrictive substances might contribute to the
regulation of resting vascular tone and CBF, in addition to
their role in neurovascular coupling (Filosa et al., 2015).
Indeed, recent studies have shown that astrocytes are also
involved in the regulation of parenchymal arteriole’s vascu-
lar tone and cerebral autoregulation (Kim et al., 2015;
Rosenegger et al., 2015). It is well known that astrocytes
respond to an injury in the central nervous system by chang-
ing their phenotype and transform into reactive astrocytes
with a change in their morphology and the level of expres-
sion of different proteins, such as glial fibrillary acidic pro-
tein (GFAP) and extracellular matrix proteins (laminin,
perlecan, etc.). The differences in the evoked vascular
responses (vasoconstriction vs. vasodilation) after astrocyte
activation might also contribute to the differences observed
in experimental approaches (i.e., nonphysiological stimula-
tions, species of animals, different developmental stages; for
review see Filosa et al., 2015). Regardless of the controversy
surrounding the polarity of the evoked vascular response
upon astrocyte stimulation, these studies firmly demonstrate
an important role of astrocytes in the regulation of CBF
under physiological conditions. This also suggests that astro-
cyte phenotype changes (quiescent vs. reactive astrocyte)
should not be overlooked when studying pathologies that
involve vascular dysfunction.

Clinical Observations

Decreased CBF and impaired cerebrovascular
autoregulation. CBF has been studied in humans via
computed tomography using different compounds such as
113Xe, stable Xe, or 15O2. Investigations showed that, early
after a TBI (within the first 6 hr), significant numbers of
patients present with depressed CBF values going as low as
22.5 ml/100 g/min when a normal CBF in adult humans
should be approximately 45–50 ml/100 g/min (Bouma et al.,
1991; DeWitt and Prough, 2003). It has been shown that the
values can even reach 15 ml/100 g/min in patients with
severe TBI (Bouma et al., 1992). For children, it has been
shown that low CBF (<20 ml/100 g/min) and younger age
(<5 years) were predictive of unfavorable outcomes, such as
severe disability or vegetative state (Adelson et al., 2011).

This decreased CBF and its evolution during the
first few weeks after a head injury are related to the recov-
ery. Indeed, the reduction in CBF improves as recovery
occurs (Langfitt et al., 1977). Moreover, when the CBF
returns to normal within 3 weeks, the neurological out-
come is significantly better than for the patients who still
have a subnormal CBF after this time (Inoue et al., 2005).

Cerebrovascular autoregulation is an essential mech-
anism aimed at maintaining adequate blood perfusion in
the brain by changes of cerebrovascular resistance. CBF is
therefore maintained so that there is a constant local per-
fusion over a pressure range of 60–160 mmHg (Golding,
2002). After a brain injury, cerebrovascular autoregulation
is impaired or abolished in many patients (Enevoldsen and
Jensen, 1978; Rangel-Castilla et al., 2008). In summary,
changes of CBF have been shown in patients after TBI,
with a possible correlation with the outcomes.

Subarachnoid hemorrhage and vasospasms.
Moderate and severe TBI may induce intracranial bleeding
that can be associated with skull fracture or parenchymal
contusions. Hematomas can increase intracranial pressure
through the distortion of the injured brain tissue and ische-
mic lesions from the compression of the surrounding vas-
culature. Several types of bleeding can occur between the
skull and the brain, epidural hematoma (between the skull
and the dura mater), subdural hematoma (between the
dura and the arachnoid mater), and subarachnoid hemor-
rhage (SAH; between the arachnoid and the pia mater).

SAH is a common feature of severe TBI. Approxi-
mately 40% of the patients with a severe head trauma pres-
ent with SAH, which is associated with poor functional
outcomes (Eisenberg et al., 1990; Servadei et al., 2002).
Severe SAH can lead to death or severe disability even if it
is detected and treated early, although treatment options
are limited.

Cerebral vasospasms have been shown to correlate
with severe SAH. They are characterized by contractions
of the cerebral vasculature and usually predict a poor
outcome. Indeed, 30–50% of the patients with SAH will
develop vasospasms, increasing the risk of ischemic inju-
ries (Armin et al., 2006). The onset occurs between days
2 and 15 after injury (Martin et al., 1997) and is accompa-
nied by hypoperfusion in 50% of patients. With regard to
the type of injury, it has been shown that blast injury
patients are more likely to develop vasospasms than
patients with other types of TBI (Zubkov et al., 2000).
Moreover, vasospasms in blast-induced TBI have been
shown to last for up to 30 days (Armonda et al., 2006),
although they tend to resolve completely after 14 days in
closed-head TBI without blast (Oertel et al., 2005).

Bleeding after severe and moderate TBI is a land-
mark of the acute vascular dysfunction. However, even
without major bleeding, the BBB can still be injured in
all TBI severities, from mild to severe, and can be associ-
ated with edema formation.

Edema formation and BBB disruption.
Decreased CBF induces hypoxic/ischemic conditions,
further contributing to the evolution of secondary injuries
as well as the presence of microbleeding or hemorrhagic
components. After a brain injury, edema formation can
have dramatic consequences for morbidity and mortality
because it induces intracranial hypertension and contrib-
utes to the vicious cycle of the secondary injury cascade
(Unterberg et al., 2004). Classically, two types of brain
edema have been described, cytotoxic and vasogenic.
Cytotoxic edema is defined by cell swelling, without an
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initial BBB alteration, whereas vasogenic edema is caused
by an initial BBB disruption and an increased permeability
of endothelial cells. However, this concept has recently
been revised, suggesting that, during the phase of edema
build-up following an acute brain injury, anoxic and ionic
edema precede vasogenic edema (Badaut et al., 2013).
Anoxic edema occurs within a few minutes after the ini-
tial injury; it is characterized by the swelling of astrocytes
and neuronal dendrites, resulting from the lack of energy
induced by oxygen and nutrient deprivation. Without
sufficient energy, control of the ionic gradients is affected,
resulting in water entry into the cells. Anoxic edema is
quickly followed by ionic edema, in which the absence of
oxygen and nutrients leads to the alteration of the ionic
gradients within endothelial cells, with transcapillary flux
of Na1 ions and tissue swelling (Badaut et al., 2013).
Finally, vasogenic edema appears because of the increased
permeability of endothelial cells.

In patients, BBB disruption allows diffusion of mol-
ecules of over 500 kDa in the peripheral circulation and
can therefore be measured by serum markers. Typically,
the assessment of BBB status is made through the mea-
surement of the CSF–serum albumin quotient (Andersson
et al., 1994). A study has shown that serum levels of
S100-b, an astrocytic protein, could also indicate BBB
dysfunction 12 hr after severe TBI; this is a less invasive
technique (Blyth et al., 2009). However, a recent meta-
analysis suggests that this measurement would be more
useful in evaluating the TBI severity and in determining
the long-term prognosis in patients with moderate to
severe brain injury (Mercier et al., 2013). In a clinical
study involving patients with severe nonpenetrating brain
injuries, 44% of the patients had significant BBB disrup-
tion, which was associated with more severe TBI and
worse outcomes after 18 months (Ho et al., 2014). More-
over, another study suggests that patients with severe TBI
and BBB disruption had a higher risk for intracranial pres-
sure as well as a trend toward increased mortality (Saw
et al., 2014).

In general there is better knowledge on molecular
changes in BBB dysfunction in rodent models than in
human (see below). After a TBI, the upregulation of dif-
ferent matrix metalloproteases (MMPs) is known to alter
proteins of the extracellular matrix and participate in the
degradation of the BBB. Despite limited information on
MMP expression in the human brain after TBI, a recent
clinical study involving eight patients with severe TBI
investigated the temporal response of several MMPs from
cerebral microdialysates and in CSF over 6 days following
the injury. MMP8 and MMP9 are increased in the brain
and in the arterial plasma immediately following trauma.
They progressively decrease, whereas MMP7 starts rising
slowly after 4 days. Interestingly, MMP8 levels are associ-
ated with mortality (Roberts et al., 2013). A very recent
study involving 100 patients with severe TBI did not
show any difference in serum MMP9 levels between sur-
vivors and nonsurviving patients at 30 days. However, the
authors showed significantly higher serum TIMP-1 (tissue
inhibitor of MMP1) levels among nonsurviving patients

compared with survivors, suggesting that TIMP-1 could
be used as a prognostic biomarker of mortality in TBI
patients (Lorente et al., 2014).

Vascular dysfunction is present after TBI, from BBB
alteration (capillary level) to modification of the brain
perfusion (large blood vessels). Altogether these clinical
findings strongly suggest alterations at different levels of
the vascular tree.

PRECLINICAL OBSERVATIONS

Preclinical TBI models have the advantage of advancing
our knowledge of the cerebrovascular and NVU changes
that may occur after TBI.

CBF and Energy Metabolism

As in clinical settings (Bouma et al., 1991, 1992),
changes in the CBF have been observed in animal models
of TBI. Reduction of CBF after injury has been observed
in animal models of severe controlled cortical impact
(CCI; Bryan et al., 1995; Kochanek et al., 1995; Plesnila
et al., 2003). In a severe CCI model, and using MRI with
iron as a contrast agent, a marked drop in the cerebral
blood volume has been shown after injury in adult rats,
which had not recovered at the lesion site 2 weeks post-
TBI (Immonen et al., 2010). In a lateral fluid percussion
(LFP) injury model, which induces a more diffuse type of
brain injury, decreased CBF in the perilesional cortex and
hippocampus has been observed up to 8 months after
injury in adult rats (Hayward et al., 2010). Importantly, a
reduction of CBF has also been observed in mild TBI
models (Villapol et al., 2014; Long et al., 2015). In a mild
CCI model with adult rats, a decrease in CBF at the
lesion site was observed acutely after the injury with
recovery to near-normal values after 2 weeks (Long et al.,
2015). In a mild/moderate CCI model, the reduction of
CBF was delayed, with restoration at 30 days post-TBI in
young adult mice (Villapol et al., 2015).

Altered CBF is likely to contribute to secondary
injuries after TBI by decreasing glucose and oxygen deliv-
ery. The brain does not have sufficient energy stores and
is therefore highly dependent on continuous CBF. More-
over, it has been shown that, during the first 6 hr after
concussion in rats, cells in the injured brain show evi-
dence of hypermetabolism (Yoshino et al., 1991). Conse-
quently, the decreased CBF and the hypermetabolism
occurring early after TBI result in a mismatch between
demand and supply, known as uncoupling of CBF and
glucose metabolism. After this hypermetabolic phase, glu-
cose metabolism has been shown to be decreased in an
age-dependent manner. In young adult rodent models
(P35), it lasts for 5–10 days (Hovda et al., 1991; Yoshino
et al., 1991), whereas it only lasts for 3 days in juvenile
rats (P17; Thomas et al., 2000). In human studies, it can
last for up to 1 month (Bergsneider et al., 2001; Glenn
et al., 2015). Aerobic metabolism is decreased and anaero-
bic glycolysis is increased, resulting in production of lac-
tate (Verweij et al., 2007). Even though lactate has long
been considered a waste product of impaired metabolism,
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it is now clear that it has a key role in energy metabolism
after head injury. Not only can it be used by neurons to
produce energy (Pellerin, 2003), it is now suggested that
it is a preferential fuel for the brain (Bartnik et al., 2007).
In a study of TBI patients using isotope tracers, Glenn
and colleagues (2015) showed that approximately 70% of
the carbohydrate consumed by the injured brain comes
from the peripheral lactate production. On the other
hand, it has been shown that increased lactate in the cere-
bral parenchyma is associated with poor neurological out-
comes in pediatric populations (Ashwal et al., 2000). To
explain this difference, Glenn and colleagues suggest that
lactate accumulation in the brain is in the first case a result
of high production complicated by limited disposal and in
the second case a result of metabolic stasis leading to aci-
dosis (Glenn et al., 2015).

Intravenous lactate therapy has been used in rats
after fluid percussion injury and has been shown to have
beneficial effects on cognition (Holloway et al., 2007).
Lauritzen and colleagues (2014) suggest that these benefi-
cial effects could be due not only to an increased metabo-
lism of lactate but also to its binding to the receptor
hydrocarboxylic acid receptor 1 (HCA1). Indeed, the
authors suggest that, when lactate concentration rises,
HCA1 inhibits cAMP generation, thereby slowing glycol-
ysis rates (Lauritzen et al., 2014).

Several studies have investigated the expression of
lactate transporters, monocarboxylate transporters
(MCTs), after TBI. MCTs in brain lysates are increased
during the first week post-CCI in young adult rats at P35
and P75 (Prins and Giza, 2006). The same research group
performed a study in which they used a ketogenic diet in
the rats for 1 week after the injury. This diet increased
MCT levels, improved the behavioral outcomes, and
reduced the cortical lesion volumes but only in younger
rats (Appelberg et al., 2009).

It is also interesting to note that another study by
Prins and collaborators (2013) showed that the metabolic
depression occurring after a single head injury reflects the
time course of vulnerability of the brain. The authors sug-
gest that glucose metabolism could serve as a biomarker
to determine the duration of cerebral vulnerability. This
concept would be very important to consider, especially
for repeated brain injuries within the context of sports
injuries.

Early BBB Opening

The effect of TBI on the BBB differs according to
age and the type and severity of the injury. The changes
of the BBB have been studied mainly at early time points,
and they can range from simple alterations to complete
rupture of the biochemical and functional properties.
Opening of the BBB happens immediately after a TBI
and contributes to vasogenic edema. In a concussion
model in cats, the opening has been shown as early as 3
min after injury (Povlishock et al., 1978).

Several components of the BBB can be affected after
a TBI. First, the endothelium itself has been shown to

sustain morphological lesions. In a cat model of moderate
to severe fluid percussion injury, electron microscopy
revealed the presence of two types of lesions on the lumi-
nal surface of pial arterioles, crater-shaped indentations
and dome-shaped projections of the endothelial cell sur-
face, typically corresponding to necrotic cells (Wei et al.,
1980). In a cortical cold injury model in rats, microvessels
in the lesion area (from the pial surface to the fourth cort-
ical layer) have been found to be necrotic early after the
impact (Nag et al., 2007). Interestingly, the smooth mus-
cle layer of the vessels was not morphologically altered by
the impact (Wei et al., 1980).

Moreover, the tight junction complex has been
shown to be affected after different experimental models
of TBI. Early after the injury, pial and intracerebral vessels
show decreased claudin-5 (at 2 days) and occludin (at 2
and 4 days) levels in a model of cortical cold injury in rats
(Nag et al., 2007). In a model of mild closed-head injury,
tight junction complexes appear intact under electron
microscopy during the first hours after injury (Rafols
et al., 2007). However, it has been shown that, in models
of mild TBI induced by blast shock waves, there is a loss
of tight junction proteins (occludin, claudin-5, and zonula
occludens protein-1) at 6 and 24 hr postinjury (Abdul-
Muneer et al., 2013) and increased immunoglobulin G
extravasation 5 min, 24 hr, and 48 hr postinjury (Yeoh
et al., 2013; for review see Shetty et al., 2014). In a juve-
nile CCI model, immunoglobulin G extravasation levels
are high near the injury site and surrounding tissue at 1
and 3 days and are lower by 7 days (Pop and Badaut,
2011).

After a TBI, the upregulation of different MMPs is
known to participate in the degradation of the BBB.
MMP9 and MMP2 increase acutely after TBI in rodents
(Wang et al., 2000; Zhang et al., 2010). MMP3 activity,
however, is increased chronically after TBI in rats and
may play a role in synapse restoration (Zhang et al.,
2010). After TBI in a P7 rat, MMP2 and MMP9 mRNA
and protein levels are elevated in the injured tissue
(Sifringer et al., 2007).

Finally, astrocytes, which are a key component of
the BBB (Abbott et al., 2006), have been shown to be
decreased in number after LFP injury in the adult rat hip-
pocampus (Hill-Felberg et al., 1999; Zhao et al., 2003),
contributing to BBB alteration. Astrocyte loss starts as
early as 30 min postinjury and continues until 24 hr
(Zhao et al., 2003). Another study focused on later time
points and showed that the astrocyte population in the
injured hippocampus at 7 days was reduced by 64% of the
total population compared with uninjured rats. After 1
month, the astrocyte population is restored to 85%, show-
ing compensation for the earlier cell loss (Hill-Felberg
et al., 1999).

SMC Changes

As described earlier, the cerebral blood vessels con-
tain a smooth muscle layer called the tunica media in the
vascular wall, in cortical arterioles consisting of one to
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three layers of SMCs (Fig. 1; Rafols et al., 2007). During
vascular development, SMCs present mostly a synthetic
phenotype, with high growth and synthetic rates, contrib-
uting to the secretion of extracellular matrix proteins such
as collagen and elastin, which are important for the stabil-
ity of the blood vessels (Wagenseil and Mecham, 2009).
In adult blood vessels, SMCs acquire a contractile pheno-
type, with a low proliferation rate and a low synthetic
activity. They express a number of contractile proteins
such as alpha smooth muscle actin (aSMA), smooth
muscle-myosin heavy chain (SM-MHC), smoothelin-A/
B, and calponin, as well as ion channels and signaling
molecules required for the contractile function of the cell
(Owens et al., 2004; Rensen et al., 2007). Nonmuscle
MHC isoform-B and cellular retinol binding protein
(CRBP)-1 have been described as suitable markers for
synthetic SMCs. They are upregulated when MHC is
decreased in the proliferating SMCs (Rensen et al., 2007).
Both synthetic and contractile phenotypes exist in the
smooth muscle layer, but it should be noted that they rep-
resent two ends of a wide spectrum of SMCs with inter-
mediate phenotypes. The ratio of synthetic and
contractile markers changes depending on the develop-
mental age, the vascular environment, and the physio-/
pathological situation (Rensen et al., 2007).

SMCs have been shown to exhibit long-term
changes after a TBI and are therefore involved in different
types of secondary injuries. Endothelin-1 is a peptide
released mainly from the vascular endothelium and
induced after TBI (Inoue et al., 1989). It contributes to
increased aSMA in SMC and pericyte during the first
hours postinjury, resulting in a decreased diameter of arte-
rioles (Dore-Duffy et al., 2011). Molecular changes have
been observed in other potential contractile proteins such
as calponin in rodent models of TBI. Calponin expression
is significantly increased during the first 48h, in associa-
tion with enhanced vasoreactivity. This modification is
also under the influence of the endothelin pathway
(Kreipke and Rafols, 2009). Inhibition of calponin phos-
phorylation reduces changes in vasoreactivity post-TBI
and is associated with improved CBF (Kreipke and
Rafols, 2009). Similar phenotypic switching has been
observed in an in vitro model of SMCs exposed to blast
injury showing a mRNA decrease of the contractile pro-
tein smoothelin and an absence of SM-MHC in relation
to vasospasm after blast-TBI (Alford et al., 2011).

Together with autoregulation, myogenic regulation is
one of the mechanisms regulating the constancy of the
blood flow during changes in perfusion pressure. The myo-
genic response is initiated by the vascular smooth muscle
itself. For example, when the smooth muscle stretches,
SMCs contract. After head trauma, the myogenic response
can be impaired by responding abnormally to pressure
changes due to various molecular mechanisms, including
elevated protein kinase C activity and altered transient
receptor potential channels (Golding et al., 1998; Mathew
et al., 1999).

Nitric oxide (NO) signaling has been shown to be
involved in the regulation of cerebrovascular tone (Hamel,

2006). The effects of NO are balanced between favorable,
due to NO-mediated stimulation of cGMP and vasodilation
at low concentrations, and unfavorable due to free radical-
related proinflammatory effects at high concentrations. The
activity of endothelial NOS (eNOS) exhibits a bimodal
change after TBI with an initial increase spanning a few
minutes followed by a �50% decrease relative to baseline
levels for 7 days before normalizing (Wada et al., 1998;
Cherian et al., 2004). This decrease of constitutive NOS
activity may contribute to altered CBF and cerebral autore-
gulation, in combination with changes in the myogenic
response of the SMCs. Inducible NOS (iNOS) expression
and activity have been shown to be increased not only in
SMCs but also in neurons, macrophages, neutrophils, astro-
cytes, and oligodendrocytes, reaching peak levels between 4
and 48 hr after injury (Clark et al., 1996; Cherian et al.,
2004; Steiner et al., 2004). Unfortunately, upregulation of
iNOS results in a harmful increase of tissue NO levels
(Cherian et al., 2004) that are well known to contribute to
the secondary injury cascade including neuroinflammation,
apoptosis, excitotoxicity, energy depletion, and production
of reactive oxygen species (Guix et al., 2005).

Changes in perivascular innervation. Along
with the changes observed in endothelial and SMCs, it
has been suggested that the perivascular innervation could
be altered after TBI and thereby involved in the cerebro-
vascular dysfunction. The perivascular nerve plexus is part
of the neurogenic regulation of the vascular tone of the
pial and larger arteries and several studies have shown that
the cerebrovascular response to vasoactive substances is
impaired after TBI (Wei et al., 1980; Armstead, 1997;
Fujita et al., 2012). Significant changes are observed in
the perivascular nerves of cerebral arteries during the first
week after severe diffuse TBI induced by impact accelera-
tion (Ueda et al., 2006). A decrease in the number of
perivascular nerve fibers peaking at 24 hr after injury have
been described, and in some instances a decrease in peri-
vascular nerve fibers up to 7 days postinjury (Ueda et al.,
2006). This decrease in the number of fibers could be due
to erythrocyte toxicity after SAH because blood is known
to cause the denervation of cerebral arteries 3–7 days after
exposure (Duff et al., 1986; Sercombe et al., 2002). It is
associated with a decrease in the concentration of vasoac-
tive substances like acetylcholine, vasoactive intestinal
peptide, substance P, and calcitonin gene-related peptide
(Sercombe et al., 2002). Therefore, the neurogenic con-
trol of the vascular tone is affected by a TBI, due to the
decreased number of nerve fibers in the perivascular area.

Astrogliosis and Consequences on Blood
Perfusion and BBB

In cases of severe injury, astrocytes become reactive
and proliferate to form a glial scar (Burda and Sofroniew,
2014). The role of astrogliosis is still debated; it can be
both beneficial and detrimental to the surrounding tissues,
depending on the timeline of the pathological processes
(Sofroniew, 2009). Regardless of this controversy, the
process of astrogliosis can have a profound impact on the
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events following a brain injury because astrocytes have
numerous functions in the healthy central nervous system,
such as providing energy for neurons, regulating ion and
neurotransmitter homeostasis, participating in synapse
development and function, and regulating CBF (Sofro-
niew and Vinters, 2010).

Astrocytes are among the first cells to respond to
TBI and the mechanical forces of TBI trigger astrogliosis
(Burda et al., 2015). It seems that astrocytes are especially
vulnerable to mechanical injury, and, even though it is
still not clear how this response is mediated, it could
involve the activation of astrocytic mechanoreceptive
channels (Burda et al., 2015). The activation of astrocytes
with stretch injury or shear stress involves a rapid calcium
influx (Rzigalinski et al., 1998; Maneshi et al., 2015).
Moreover, TBI induces activation of signaling pathways
in astrocytes, including inositol triphosphate (IP3) signal-
ing, with IP3 concentration being increased up to 48 hr
postinjury (Floyd et al., 2001). The induction of IP3 sig-
naling increases intracellular calcium concentration,
which in turn activates phospholipase A2 (among many
other calcium-sensitive enzymes such as protein kinase C
and calpain) and can influence the release of vasoactive
substances (Howarth, 2014). Therefore, any changes in
the intracellular calcium concentration within astrocytes
postinjury could influence the release of vasoactive sub-
stances, and as a consequence the regulation of CBF and
perfusion, and contribute to the cerebrovascular dysfunc-
tion post-TBI.

It has been demonstrated that several vasoactive sub-
stances can be released from astrocytes after trauma.
Stretch injury to primary astrocyte cultures induced a
release of isoprostanes (Hoffman et al., 2000), shown to
be vasoconstrictors of cerebral arterioles (Hoffman et al.,
1997). Interestingly, increased levels of isoprostanes in
CSF have been observed in adult and pediatric patients
after moderate and severe TBI (Bayir et al., 2002; Varma
et al., 2003; Yen et al., 2015). Therefore, increased secre-
tion of isoprostanes from astrocytes could contribute to
the decreased cerebral perfusion after TBI. Similarly, a
stretch injury on primary astrocyte cultures provoked
endothelin 1 release from astrocytes associated with cal-
cium influx (Ostrow et al., 2000). Endothelin 1 is another
powerful vasoconstrictor, and its levels are increased after
TBI in multiple animal models (Petrov and Rafols, 2001;
Armstead and Kreipke, 2011; Armstead and Raghupathi,
2011). Increases in endothelin 1 have been associated
with unfavorable outcomes in children after severe TBI
(Salonia et al., 2010). In addition, an increase in the
expression of endothelin 1 receptors has been observed
after TBI in several animal models (Kallakuri et al., 2010).

In addition to the role of astrocytes in vascular tone,
the cells play a key role in the integrity of the BBB
(Abbott et al., 2006). In fact, they can release various fac-
tors such as cytokines and inflammatory mediators that
can affect the BBB after brain injury (Chodobski et al.,
2011; Sofroniew, 2014). For example, astrocytic secretion
of chemokines (Chodobski et al., 2011) and three iso-
forms of transforming growth factor-b (TGF-b; Constam

et al., 1992) have been shown to contribute to the BBB
leakage after brain injury (Shen et al., 2011). In patients,
increased TGF-b expression has been observed in patients
with severe TBI, in whom it parallels BBB function
(Morganti-Kossmann et al., 1999). As discussed above,
MMPs affect the structure of the BBB after TBI, and they
are extensively produced by reactive astrocytes (Chen and
Swanson, 2003).

The expression of the water channel aquaporin 4,
expressed mainly on astrocyte endfeet in proximity to
blood vessels in the cortex, is also altered after TBI, which
is related to the formation of cerebral edema (Badaut
et al., 2013). There is a correlation between the level of
aquaporin 4 expression and disruption of the BBB
(Fukuda and Badaut, 2012). In addition to the secretion
of different molecules that can affect the BBB integrity
and cerebral perfusion, the physical interaction between
astrocytes and the vasculature can also be changed after
TBI (Villapol et al., 2014), which all can contribute to the
vascular dysfunction after TBI.

Altogether, astrocytes change their phenotype and
can contribute to the vascular pathology observed after
TBI. The neurodegeneration observed after TBI could be
a result of chronic neuroinflammation and astrocyte acti-
vation (Faden and Loane, 2015). Therefore, it may be
important to consider the contribution of reactive astro-
cytes to the long-term consequences of vascular
dysfunction.

LONG-TERM PATHOLOGICAL MECHANISMS
BEHIND VASCULAR DYSFUNCTIONS

BBB Dysfunctions and Long-Term Degeneration

As discussed above, there is a wide range of altera-
tions to the brain vasculature at early time points after
TBI. These changes support the hypothesis that TBI is a
cerebrovascular injury with major dysfunction of the
NVU after the primary impact. Most studies have so far
focused on neuronal cell death and long-term recovery
after TBI. However, little is known about the long-
lasting changes in the brain vasculature and their involve-
ment in functional outcome.

For a long time, the opening of the BBB was con-
sidered a short-term event that normalized within 1
week, as we observed in our rodent TBI model (Pop and
Badaut, 2011). However, the BBB remains opened as late
as 30 days after an insult in a stroke model (Strbian et al.,
2008), suggesting long-lasting changes of the endothelial
properties. At 2 months postinjury in our juvenile TBI
model, the BBB function seems to be restored because
IgG staining was not detected around the lesion site (Pop
et al., 2013). Moreover, claudin-5 expression in the pene-
trating arteries is significantly increased 2 months postin-
jury (Pop et al., 2013) as well as 2 weeks after moderate
compression of rat somatosensory cortex in a different
study (Lin et al., 2010). These observations suggest that
the long-term phenotypic transformations of the endothe-
lial cells compensate for the early BBB alteration
(Pop et al., 2013).
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TBI-induced long-term neurodegeneration is in
part related to its effects on the BBB. Many studies have
shown that TBI can accelerate brain aging and promote
accumulation of aberrant proteins such as amyloid-b (Ab;
Johnson et al., 2010). Our recent studies suggest that
when a TBI occurs early in life it can have long-term
consequences. We previously reported for juvenile TBI
an impairment of sensorimotor function and spatial mem-
ory deficits up to 6 months after the injury (Kamper
et al., 2013). Some studies have suggested a link between
vascular function and cognitive deficits (Alosco et al.,
2013), and it is possible that the cognitive impairments
that we observed could be due to phenotypic changes of
the BBB, including a decrease of the efflux pump P-
glycoprotein (P-gp) and an increase of the perivascular
matrix proteins perlecan and fibronectin. These changes
are observed at 2 and 6 months after injury (Jullienne
et al., 2014), and the matrix changes have also been
observed in AD patients (Lepelletier et al., 2015).
Changes in the matrix properties possibly participate in
neurodegenerative processes by leading to the accumula-
tion of Ab, decreasing its clearance and its perivascular
drainage (Pop et al., 2013; Jullienne et al., 2014). P-gp
has been suggested to be a key player in Ab clearance
from the brain parenchyma because its expression is
decreased on endothelial cells in aged human and AD
brains as well as in aged rodents (Silverberg et al., 2010).
In addition, P-gp knockout models have increased Ab
deposition after injection of Ab in the brain (Cirrito
et al., 2005).

The caveolin protein family takes part in the caveo-
lae formation, which is known to be involved in endocy-
tosis, transcytosis, and exocytosis in endothelial cells
(Jodoin et al., 2003; Predescu et al., 2007). Caveolin-1
(cav-1), is one of three isoforms that is expressed by brain
endothelial cells (Lisanti et al., 1994; Virgintino et al.,
2002). Cav-1 also modulates the activity of signaling mol-
ecules, including inhibition of endothelial NO synthase
(eNOS; Bucci et al., 2000; Bauer et al., 2005). Its expres-
sion is increased in the endothelium during the first week
after a cold injury model of TBI (Nag et al., 2007). In
support of the phenotypic transformation of the endothe-
lium after juvenile TBI, we observed an increase in cav-1
immunostaining in brain cortical vessels at 2 months post-
injury (Badaut and Bix, 2014; Badaut et al., 2015). This
observation also suggests that cav-1 could play a role in
the altered claudin-5 and P-gp expression that occur after
TBI. Interestingly, cav-1 has been associated with stabili-
zation of claudin-5 within the caveolae (McCaffrey et al.,
2007) and with a decrease of P-gp activity (McCaffrey
et al., 2012). We believe that the changes in the BBB
properties both short- and long-term after TBI will have
direct and indirect consequences for the astrocytic proper-
ties and subsequently brain perfusion.

SMC Changes Long-Term After TBI

It is known that phenotypic changes of SMCs play a
critical role in various major human diseases, including

cancer, hypertension, asthma, and atherosclerosis. SMCs
exhibit a high phenotypic plasticity, which allows them to
switch from a contractile function (to regulate blood ves-
sel diameter) to a secretive function (to produce extracel-
lular matrix proteins; Alexander and Owens, 2012).

The decrease of CBF observed after TBI would gen-
erate chronic hypoxia throughout the vascular tree. In
sheep, the SMCs of the carotid artery after chronic hypoxia
differentiate from contractile to synthetic phenotype under
a vascular endothelial growth factor (VEGF)-driven mecha-
nism, leading to an altered arterial contractility (Hubbell
et al., 2012). SMCs lose their contractile properties via a
decrease of SM-MHC and an increase of nonmuscle MHC
(Hubbell et al., 2012). Moreover, hypoxia induces an
increase in contractile protein MLC-20 and a decrease of
MLC-kinase by upregulating VEGF receptors Flk-1 and
Flt-1 (Adeoye et al., 2013). VEGF levels change in TBI
(Morgan et al., 2007; Mellergard et al., 2010), but so do lev-
els of other growth factors and cytokines. SMC phenotypic
modulation in the periphery is under the control of several
molecular pathways that could be present after TBI, such as
platelet-derived growth factor (PDGF)-BB, PDGF-DD,
and interleukin-1b. All of these pathways can induce rapid
downregulation in expression of multiple SMC differentia-
tion marker genes, including aSMA, SM-MHC, and calpo-
nin (Alexander and Owens, 2012). A wide range of
signaling pathways is involved in the responses to these
molecular proteins, and it is highly possible that the early
changes in the NVU environment can contribute to long-
term changes in the SMC phenotype.

CONCLUSIONS AND FUTURE
THERAPEUTIC STRATEGIES

TBI is a massive health burden for which basic science
researchers and clinicians have shown that it is undeniably
also a cerebrovascular injury. Each of the components of
the NVU plays key roles in the pathogenesis of injury,
during the short- and long-term periods after injury.
Molecular and cellular mechanisms leading to long-term
impairments are dependent on the type of injury and its
severity and the age of the patient, and these parameters
must to be considered in each case to improve recovery.
This review highlights important targets regarding the
management of secondary injuries as they relate to the cer-
ebral vasculature. Indeed, endothelial cells, astrocytes, and
SMCs are all involved in CBF regulation, edema forma-
tion, BBB disruption, vasospasms, and energy metabolism.
The Review pinpoints the involvement of multiple players
within the NVU. Therefore, future therapeutic strategies
should reflect this complexity and combine different treat-
ment at different time points. This strategy has recently
been discussed by Margulies and colleagues (2016) in a
review entitled Combination therapies for traumatic brain
injury: retrospective considerations. This article provides
an overview of six different projects aiming for multidrug
testing, with insights, difficulties, and recommendations
for development of future therapy for TBI. Our review of
the literature suggests that intravenous injection of lactate
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(Holloway et al., 2007), inhalation of NO (Terpolilli et al.,
2013), injection of an inhibitor of c-Jun–N-terminal
kinase (Borsello et al., 2003), and extracellular matrix pro-
teins such as perlecan domain V (Jullienne et al., 2014) are
promising targets and could be considered for combination
with the aim of restoring vascular function. There is there-
fore an ongoing need to study the mechanisms by which
these cellular constituents respond to TBI and how they
modulate the cerebrovascular tone.
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