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ABSTRACT
Recent technological developments, such as single unit recordings coupled to optogenetic approaches, have
provided unprecedented knowledge about the precise neuronal circuits contributing to the expression and recovery
of conditioned fear behavior. These data have provided an understanding of the contributions of distinct brain
regions such as the amygdala, prefrontal cortex, hippocampus, and periaqueductal gray matter to the control of
conditioned fear behavior. Notably, the precise manipulation and identification of specific cell types by optogenetic
techniques have provided novel avenues to establish causal links between changes in neuronal activity that develop
in dedicated neuronal structures and the short and long-lasting expression of conditioned fear memories. In this
review, we provide an update on the key neuronal circuits and cell types mediating conditioned fear expression and
recovery and how these new discoveries might refine therapeutic approaches for psychiatric conditions such as
anxiety disorders and posttraumatic stress disorder.
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Anxiety disorders are among the most common psychiatric
conditions with a lifetime prevalence of around 6% in the
population worldwide (1). In particular, posttraumatic stress
disorder (PTSD) represents one of the most frequent anxiety
disorders, which can develop following the experience of a
traumatic event. Typically, PTSD patients present symptoms
such as re-experiencing the traumatic experience, hyperar-
ousal, and avoidance of situations, places, or objects that
serve as reminders of the traumatic event. It is largely
accepted that associative processes are involved in the
etiology and maintenance of PTSD and anxiety disorders
(2,3) and stimuli associated with the traumatic event can elicit
conditioned fear responses (3). Despite a broad knowledge
about brain structures involved in fear behavior, the mecha-
nisms involved in the regulation of fear expression were, until
recently, still largely unknown. Recent single unit recordings
and optogenetic approaches have allowed a better identifica-
tion of the circuits controlling fear expression in rodents. In the
laboratory, fear behavior is classically studied using Pavlovian
fear conditioning, which consists of repetitive associations of a
neutral conditioned stimulus (CS), such as a sound or a
context, with an unconditioned stimulus (US), usually a mild
electric footshock. Following conditioning, re-exposure to the
CS induces conditioned fear responses, including an immo-
bility reaction termed freezing, which represents a reliable
measure of the learned association (4). Inhibition of fear
behavior can be observed following repetitive exposure to
the CS without the US, a process termed fear extinction.
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Interestingly, fear extinction, which is known to represent a
new learning process of the CS-no US association, is sensitive
to contextual and temporal changes that can promote the
recovery of the original fear memory (5,6). In this review, we
will first provide a summary of data collected in humans and
rodents that have allowed deciphering the gross anatomical
structures involved in cued and contextual conditioned fear
expression and recovery. Second, we will provide an update of
the novel neuronal circuits that have recently been identified
as central to fear expression and recovery. Lastly, we will
discuss how these new discoveries may promote the develop-
ment of new therapeutic strategies for anxiety disorders.
NEURONAL STRUCTURES MEDIATING FEAR
EXPRESSION AND RECOVERY IN HUMANS

In humans, fear conditioning is usually studied by associating
a CS, such as a tone or a visual cue, with an aversive US, such
as a mild wrist or finger electrical shock. This aversive learning
is evaluated by measuring skin conductance responses, which
depend on the amygdala, a key structure for the processing of
fear behavior (7–10). Functional neuroimaging approaches
during and following fear conditioning in humans have been
instrumental in deciphering the networks involved in physio-
logic or pathologic fear responses. However, because extinc-
tion learning is faster in humans compared with rodents and
because some structures display within session habituation of
functional magnetic resonance imaging (11,12), fear expression
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and extinction are usually explored simultaneously in human
studies. We therefore review below studies related to both fear
expression and extinction. These studies identified the amyg-
dala, hippocampus, and prefrontal cortex as key structures for
conditioned fear in normal and pathologic conditions. In
functional neuroimaging studies, blood oxygen level-
dependent (BOLD) signal (corresponding to changes in brain
microvasculature oxygenation related to metabolic activity)
revealed amygdala activation during fear conditioning in
humans (11), particularly during fear expression (13–18).
Amygdala activation was also observed several days after
extinction of a conditioned threat memory but not if extinction
was performed during fear memory reconsolidation (19).
However, the above findings have not been consistently
reproduced (20), probably due to the heterogeneity of fear
conditioning paradigms used across neuroimaging studies.
Finally, high-resolution functional imagery revealed different
contributions of amygdala subnuclei during reversal of a
conditioned fear procedure, with activation of the central and
basolateral nuclei of the amygdala related to attentional and
associative processes, respectively (21).

Besides the amygdala, a subset of functional imaging
studies observed an activation of the hippocampus (HPC)
during fear behavior (18,22–25). Given the role of this structure
in the processing of contextual information (26–28), these data
suggest a role of the HPC in the encoding of the contextual
features associated with fear expression. Finally, several
studies reported a role of the prefrontal cortex (PFC) during
fear acquisition and expression, as well as during fear
extinction. Specifically, decreases and increases of BOLD
signals were observed in the ventromedial PFC (vmPFC) [an
equivalent of the rodent infralimbic cortex (IL) (17,29)] during
fear acquisition/expression and extinction, respectively
(17,22,25,30). Interestingly, analyses of the dorsal anterior
cingulate cortex (dACC) [an equivalent of the rodent prelimbic
cortex (PL) (16,31)] revealed an increase in BOLD signal during
fear acquisition and expression (15,17,25). Thus, these data
indicated opposing roles of the human vmPFC and dACC in
processing fear-related behavior. Functional connectivity anal-
yses, which look for significant BOLD signal correlations
between brain regions, have revealed a functional coupling
between the vmPFC, dACC, amygdala, and HPC during fear
expression (22,25) and between vmPFC, amygdala, and HPC
during fear extinction (32). Although these studies did not
evaluate the direction of changes, they indicated that fear
expression and extinction depend on the joint activity of these
structures.

In the context of human psychiatric conditions, increased
dorsomedial PFC activation, as measured with resting meta-
bolic activity, was shown to be a risk factor for the develop-
ment of PTSD (33). Interestingly, functional imaging analyses
during recollection of traumatic events in PTSD patients
revealed decreased activity in the vmPFC and increased
activity in the amygdala (34–42) [for a review, see (43)]. In line
with these results, increased amygdala and dACC activation
was observed in PTSD patients during extinction in a safety
context, whereas healthy subjects presented increased amyg-
dala and prefrontal activation in the danger context, suggest-
ing inappropriate modulation of brain activity according to
contextual information in PTSD patients (44). Higher amygdala
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activation (45) and lower vmPFC activation (46) were also
observed in PTSD patients, as compared with control sub-
jects, during presentations of fearful faces during functional
magnetic resonance imaging. Together, these data suggest
that dysfunctional vmPFC–amygdala interactions are at the
core of anxiety disorders including PTSD (32,47–51). More-
over, persistent conditioned fear in PTSD patients was sug-
gested to be related to a failure of vmPFC and HPC activation
and to a hyperactivation of dACC and amygdala (52). Impor-
tantly, this hypothesis has received strong support from work
performed in rodents (see below). Altogether, these data
provide strong arguments for the hypothesis that a dedicated
brain network comprised of the amygdala, HPC, and prefrontal
regions is involved in fear-related behavior.
NEURONAL CIRCUITS OF FEAR EXPRESSION AND
RECOVERY IN RODENTS

Data collected in rodents using lesion and inactivation
approaches have confirmed the involvement of the amygdala,
hippocampus, and prefrontal cortex in the regulation of fear
expression (Figure 1), and it is now largely accepted that fear
behavior relies on a functionally conserved network of struc-
tures in mammals. These data, which have been previously
reviewed (7–10,53–57), are discussed in Supplement 1. More
recently, optogenetic technical developments have provided
unprecedented details of the circuits and mechanisms regu-
lating fear expression. Optogenetic technology consists of the
expression of light-sensitive proteins in neurons whose exci-
tation at specific wavelengths can activate or inhibit neuronal
activity at the millisecond timescale. Currently, these techni-
ques represent one of the best strategies to identify neuronal
populations and to manipulate dedicated circuits. Recently
identified circuits are further described in the following
sections.

Central Amygdala-Periaqueductal Gray Matter
Neuronal Circuits in Fear Expression

One circuit, which includes the basolateral amygdala (BLA),
central nucleus of the amygdala (CEA), and the periaqueductal
gray matter (PAG), has been shown to drive the expression of
fear behavior following auditory fear conditioning (Figure 2A).
In this circuit, the PAG, which is involved in the genesis of
various conditioned fear responses (58–60) and the generation
of aversive instructive learning signals (61,62), receives direct
anatomical and functional inputs from the CEA (63–65). Recent
studies suggest that expression of fear behavior is driven by
the activation of the medial division of the central nucleus of
the amygdala (CEm) neurons projecting to the PAG (63,66).
Indeed, CEm output neurons are tonically controlled by lateral
subdivision of the central amygdala (CEl) inhibitory neurons
and display CS-evoked firing activity during freezing
(63,66,67). More specifically, the CEl contains two populations
of inhibitory neurons forming a disinhibitory microcircuit
controlling the activity of PAG-projecting CEm neurons. This
microcircuit is composed of CEl inhibitory neurons activated
during CS presentations (CElON neurons), which inhibit
protein kinase C-delta-expressing (PKC-δ1) CEl neurons
(CElOFF neurons) (Figure 2A). CS-evoked inhibition of CElOFF
iatry September 1, 2015; 78:298–306 www.sobp.org/journal 299
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Figure 1. Human and rodent homologous neuronal structures involved in fear expression and recovery. The neuronal structures classically involved in fear
expression and recovery in humans and rodents consist of the amygdala, composed of the basolateral amygdala (BLA), and central amygdala (central/medial
amygdala in humans, central nucleus of the amygdala [CEA] in rodents) located in the medial temporal lobe; the prefrontal cortex, composed of the dorsal
(dorsal anterior cingulate cortex [dACC] in humans), prelimbic (PL), and anterior cingulate cortex (ACC) in rodents, and ventral parts (ventral medial prefrontal
cortex [vmPFC] in humans; infralimbic area [IL] in rodents); the hippocampus (ventrally located in humans, composed of a dorsal and ventral part in rodents);
and the periaqueductal gray located in the brainstem. During fear expression (red lines), fear-related contextual information is relayed from the hippocampus
to the amygdala. The bidirectional loop between the BLA and the dorsal part of the prefrontal cortex allows updating of fear-related information, which is
further transmitted to the central amygdala and from there to the periaqueductal gray for fear expression. Fear inhibition during extinction depends on the
bidirectional connectivity between the ventral part of the prefrontal cortex and the BLA (blue lines), which ultimately regulates central amygdala activity to
reduce conditioned fear responses.
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neurons facilitates the disinhibition of PAG-projecting CEm
neurons during fear expression (63,68). In the same vein, a
subpopulation of CEl inhibitory neurons expressing the oxy-
tocin receptor (OR1) was found to inhibit PAG-projecting CEm
neurons. Consistently, the activation of OR1-expressing CEl
neurons through both local injection of the OR agonist [Thr4,
Gly7]-oxytocin or local optogenetic manipulations reduced fear
behavior (69,70). Interestingly, about 65% of PKC-δ1 CEl
neurons express the OR, suggesting that the oxytocin-
mediated suppression of fear is mediated by inhibition of
PKC-δ1 CEl neurons, which, consequently, may disinhibit
PAG-projecting CEm neurons (68–70).

In addition to the classical CEl-CEm-PAG pathway, it was
recently demonstrated that a class of somatostatin-expressing
(SOM1) CEl neurons can modulate fear behavior independ-
ently of the CEm through direct projections to the PAG (64,71)
(Figure 2A). In these two studies, the authors observed that
optogenetic inhibition of SOM1 CEl neurons suppresses fear
expression, whereas their optogenetic activation drives
unconditioned fear expression. Moreover, using retrograde
tracers and immunohistochemistry, these authors demon-
strated that among PAG-projecting CEl neurons, around
80% were SOM1 neurons. All together, these data highlight
two parallel circuits linking the CEl and PAG, which likely
300 Biological Psychiatry September 1, 2015; 78:298–306 www.sobp.
support conditioned fear behavior by increasing the activity of
PAG-projecting CEm neurons and/or PAG-projecting SOM1

CEl neurons (Figure 2A). Although, these studies identified key
circuits within the central amygdala involved in fear expres-
sion, several questions remain. In particular, it is not clear
whether the two distinct circuits are co-activated during fear
expression or if they are independently recruited depending on
the behavioral situation. Moreover, upstream circuits directly
activating PKC-δ1 CEl neurons and SOM1 CEl neurons during
fear expression need to be identified.
Amygdala-Prefrontal Circuits in Fear Expression and
Recovery

Dorsal prefrontal regions are known to play a key role in the
expression of defensive behavior. For instance, lesions of the
frontal cortex in rats and monkeys following fear conditioning
blocked fear expression (72–74). Conversely, activation of
dorsal prefrontal regions produced conditioned fear expres-
sion (75). These studies raised important questions as to
which prefrontal circuits are involved in fear expression and
how these circuits are modulated by inputs from structures
involved in the formation of fear memories, such as the BLA.
Recently, some studies have begun to shed light on these
org/journal
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Figure 2. Novel neuronal circuits
involved in fear expression and recov-
ery. (A) A first circuit of fear expres-
sion located in the central amygdala is
composed of lateral subdivision of the
central amygdala (CEl) inhibitory neu-
rons activated during presentations of
conditioned stimuli (CElON neurons),
which preferentially inhibit a second
class of CEl neurons (CElOFF neurons,
also expressing protein kinase
C-delta-expressing [PKC-δ1] and
oxytocin receptor [OR1]), thereby dis-
inhibiting medial division of the central
nucleus of the amygdala (CEm) inhi-
bitory neurons. Increased activity of
CEm neurons projecting to the ven-
trolateral periaqueductal gray (vlPAG)
is associated with fear expression and
recovery. A subset of CElON neurons
also expresses somatostatin (SOM)
and directly projects to the vlPAG to
regulate fear expression. (B) Three
types of excitatory neurons in the
basolateral amygdala activated during
fear expression (fear neurons), during
fear extinction (extinction neurons), or
both (persistent neurons) have been
recently described. Whereas the role
of persistent neurons is still not clear,
they might permanently store fear
memories within the BLA. Extinction
neurons project to the infralimbic area
(IL), where they might activate neuro-
nal circuits involved in the mainte-
nance of fear extinction. Conversely,
fear neurons are known to project to
the prelimbic area (PL), where they
could activate a disinhibitory circuit.
This disinhibitory circuit is composed
mainly of parvalbumin-expressing
interneurons (PV1 INs), whose inhibi-
tion during presentation of condi-
tioned stimuli leads to the
disinhibition of PL principal neurons
(PN) contacting the BLA and the

expression or recovery of conditioned fear responses. BA, basal nucleus of the amygdala; LA, lateral nucleus of the amygdala.
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questions by identifying novel circuits within the PL and BLA
that are causally related to fear expression.

Within the BLA, recording studies identified three neuronal
populations displaying distinct changes in activity correlated
with the expression of fear memory. The first population
(persistent neurons), which displayed persistent CS-evoked
activity after conditioning, has been suggested to encode the
maintenance of CS-US associations after learning (76,77). In
contrast, the second population (fear neurons) displayed a
reduction in CS-evoked responses throughout extinction
learning and has been suggested to encode fear expression
(76–78). The last BLA population contains excitatory neurons
activated by extinction learning (extinction neurons), which
encode the formation of extinction memories (76) (Figure 2B).
An important question related to fear and extinction BLA
neurons is to know whether they represent functionally
separated classes of neurons or if they correspond to a unique
population of neurons displaying a gradual shift in their
Biological Psych
function through extinction learning. A partial answer to this
question comes from the work by Herry et al. (76), who
recorded simultaneously from BLA fear and extinction neurons
using a dual fear conditioning paradigm. In this paradigm, two
different CSs were associated with a mild footshock but only
one of them was extinguished. They observed that the
presentation of the nonextinguished CS was associated with
high fear and the exclusive activation of fear neurons. Impor-
tantly, presentation of the extinguished CS produced low fear
behavior and was associated with the inhibition and activation
of fear and extinction neurons, respectively. These data
strongly suggest that BLA fear and extinction neurons corre-
spond to two different functional classes of neurons (76).
Interestingly, BLA fear and extinction neurons have been
shown to directly project to the medial PFC (mPFC), suggest-
ing that they could directly modulate fear expression and
extinction depending on their respective target in the mPFC
(76,79) (Figure 2B). This hypothesis has recently been refined
iatry September 1, 2015; 78:298–306 www.sobp.org/journal 301
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and confirmed by Senn et al. (79), who demonstrated that fear
neurons recorded in the BLA project to the PL region. More-
over, these authors demonstrated that the optogenetic acti-
vation or inhibition of PL-projecting BLA fear neurons during
extinction learning facilitated or reduced subsequent fear
recovery, respectively. Conversely, optogenetic activation or
inhibition of BLA neurons projecting to the IL region reduced
or promoted fear recovery (79). These data indicate that the
modulation of fear recovery following extinction can be
achieved at two distinct levels, by modulating a BLA-PL circuit
involved in fear expression or by impacting a BLA-IL circuit
involved in fear extinction (Figure 2B). The above data indicate
that the modulation of BLA-PL or BLA-IL circuits is causally
related to fear expression, which raises the question of the
specific circuits within the PL or the IL that may regulate fear
responses.

This question has been addressed over the past years and
more recently, and several studies demonstrated roles of the
PL and IL in the regulation of fear expression and extinction.
For instance, IL stimulation that mimicked extinction-induced
CS presentations reduced fear responses (80). Extinction
retrieval correlates with an increase in CS-evoked single unit
activity in the IL and changes in mPFC-evoked field potentials
(81–83). In contrast, PL electrical microstimulation increased
fear behavior, and fear expression correlates with increased
CS-evoked single unit activity in the PL (80,84). More recently,
Cho et al. (85) used slice physiology and optogenetic
approaches to investigate synaptic plasticity mechanisms that
developed between the IL and BLA during extinction. They
demonstrated that extinction was associated with a reduction
in the excitatory drive from IL inputs onto BLA principal
neurons resulting from a decreased probability of neurotrans-
mitter release (85). In another study, Do-Monte et al. (86)
elegantly demonstrated using electrophysiological and opto-
genetic approaches that fear retrieval at early time points after
conditioning depends on a PL-BLA circuit. In contrast, fear
retrieval at later time points recruits a PL-paraventricular
thalamic nucleus-CEA pathway (86). Moreover, it was recently
shown that paraventricular thalamic nucleus neurons regulate
fear behavior by a direct projection onto CEl SOM1 neurons, a
phenomenon dependent on brain-derived neurotrophic factor
receptors (87).

Additional studies also investigated the cell types and
mechanisms involved in the regulation of fear behavior at the
level of prefrontal and amygdala circuits. For instance, Courtin
et al. (88) identified a role played by a specific class of
inhibitory interneurons in the dorsal PL and anterior cingulate
cortex (ACC) during fear expression (Figure 2B). Using single
unit recordings and optogenetic approaches, they observed
that following fear conditioning, CS presentations inhibit PL
and ACC fast-spiking interneurons (INs), which correspond to
parvalbumin-expressing INs (PV). Furthermore, they showed
that PV IN inhibition during CS presentations was causally
related to fear expression via two mechanisms: a disinhibitory
mechanism that increased the excitability of PL and ACC
principal neurons (PNs) and the resetting of slow local
oscillations in the theta range (8–12 Hz) that synchronizes
prefrontal PNs to drive fear expression. These results identify
two mechanisms, both mediated by prefrontal PV INs, that
coordinate and enhance the efficiency of prefrontal PNs to
302 Biological Psychiatry September 1, 2015; 78:298–306 www.sobp.
drive fear expression (88). Over the past years, it has become
clear that neuronal synchronization of activity during specific
time windows represents an important form of information
coding in the brain that depends on brain oscillations. The
data reviewed above strongly suggest that this form of coding,
which has been described in the HPC in relation to the
formation and consolidation of spatial memory (89–92), also
contributes to the expression of fear behavior.

The contribution of neuronal synchronization between
mPFC and BLA circuits for encoding fear and safety signals
was recently investigated in an elegant set of studies. In these
studies, the authors recorded simultaneously in the mPFC,
ventral HPC, dorsal HPC, and BLA while mice were submitted
to differential fear conditioning and extinction paradigms
(93,94). In animals that discriminate the safety CS (CS2) from
the aversive CS (CS1), a strong theta (4–12 Hz) synchroniza-
tion was observed between the mPFC and BLA, suggesting
that the recruitment of the mPFC pathway is critical for
inhibiting fear memory (93). Interestingly, enhanced fear
behavior during retrieval was correlated with a strong coupling
between BLA theta and gamma oscillations. However, during
periods of safety, BLA gamma oscillations and firing activities
were entrained by mPFC theta oscillations (94). It is worthy to
note that recent data have also highlighted the role of hippo-
campal circuits in fear expression. These data are reviewed in
Supplement 1.

Together, these data indicate that circuits from the BLA to
the PL and from the mPFC to the BLA are critical for the
regulation of fear behavior (Figure 2B). To date, however, it is
unclear why this loop is necessary for fear expression or
reduction and whether or not different mPFC inputs to the BLA
are involved. In principle, synchronized mPFC inputs to the
BLA during presentation of CS associated with safety or fear
behavior may allow updating of fear and extinction memories
via the strengthening of BLA excitatory synapses reactivated
during tone presentations. Additional studies will be required
to evaluate this possibility.

FOSTERING NEW THERAPEUTIC STRATEGIES FOR
ANXIETY DISORDERS THROUGH THE
IDENTIFICATION OF NEURONAL CIRCUITS
INVOLVED IN FEAR EXPRESSION

Understanding the circuits involved in fear expression repre-
sents an important challenge for the refinement of current
therapeutic approaches for anxiety disorders. These
approaches, which include cognitive and behavioral therapies,
are usually associated with short-term improvement of
anxiety-related symptoms. Indeed, it has recently been dem-
onstrated that pathologic fear responses can be reduced
through extinction procedures (19,95). However, relapse of
traumatic fear memories often occur spontaneously following
extinction or can be precipitated by exposure to contextual
cues (96). These observations indicate that the extinction
procedure alone is probably insufficient to permanently reduce
anxiety-related symptoms. Recent studies of the circuits
involved in fear expression could be highly beneficial in
fostering the development of new therapeutic strategies for
anxiety disorders. Several methods based on brain stimula-
tion, like electroconvulsive therapy (97), deep brain stimulation
org/journal
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(98), transcranial direct current stimulation (99), or transcranial
magnetic stimulation (TMS) (100–102), are currently used to
treat anxiety disorders and PTSD in a complement of behav-
ioral and pharmacologic strategies. The use of these strategies
in the context of pathologic anxiety and their potential refine-
ment in light of the recent findings on circuits involved in fear
expression are provided below.

Electroconvulsive shock treatment following memory reac-
tivation has been shown to disrupt emotional memories (97),
and these approaches seem relatively efficient for treating
psychiatric diseases such as major depression or even PTSD
(103,104). However, this treatment is limited by the fact that it
requires general anesthesia and momentary muscle paralysis.
Similarly, the efficacy of deep brain stimulation should be
interpreted with respect to its invasiveness, although it has
proven to be very efficient to treat Parkinson disease and
major depression (105). Repetitive TMS (rTMS) is a non-
invasive and well-tolerated technique used to treat several
psychiatric disorders for over 20 years (106). Very few studies
have investigated rTMS efficacy in PTSD treatment, and the
results that were generated were mixed (107,101). Further-
more, there is neither clear rationale nor consensus regarding
which stimulation parameters to use and which regions to
target. Most of the rTMS studies used either low-frequency
rTMS (known to be inhibitory) (101) or high-frequency rTMS
(excitatory) (102) over the right dorsolateral PFC. It has been
proposed that neutralizing the dACC, which is involved in the
expression of behavioral and autonomic fear responses
(108,109), might be an effective strategy for ameliorating
anxiety (108). For example, anxiety disorders have been
treated with anterior cingulotomy (110), in accordance with
functional evidence (111,112) and the documented direct
anatomical projections from the ACC to visceral circuits that
regulate autonomic and visceral output (113). Until now, very
few studies have attempted to target the dACC via TMS since
the main limitation of this technique is the depth of penetration
of the field, typically only reaching superficial cortices [but see
(114)]. In humans, a recent study using a new TMS coil
designed to stimulate deep prefrontal brain areas proved to
be therapeutically beneficial in PTSD patients (100). Impor-
tantly, because dACC and vmPFC regions in humans play
antagonistic roles in the regulation of fear behavior, it is critical
to control so that TMS stimulation will not result in the
activation of both regions, which could reduce the efficacy
of the stimulation. Technical reports indicate that the electrical
field beneath TMS penetrates only a few centimeters and ends
very abruptly in the human brain (115,116). This constrained
magnetic field of TMS decreases the likelihood of activating
the vmPFC, which is deeply buried in the ventral surface of the
human brain (Figure 1).

TMS stimulation of dACC could even be much more
effective if precise patterns of stimulation are used to target
specific cell classes according to their functional state at the
time of the stimulation. For instance, recent advances in rTMS
have shown that specific protocols allow for the precise
modulation of PV INs, which appear to be sensitive to
intermittent theta burst stimulation delivered through an
intermittent stimulation paradigm (117,118). Although further
experiments are required to define precise stimulation proto-
cols for the activation of specific classes of neurons, it is very
Biological Psych
likely that these approaches will be beneficial for the develop-
ment and refinement of therapeutic strategies for anxiety
disorders.

CONCLUSIONS

Over the past years, our understanding of how conditioned
fear memories are encoded and retrieved within the myriad of
neurons in dedicated brain regions has grown considerably. In
particular, innovative technologies allowing the tagging,
recording, identification, and manipulation of large neuronal
ensembles have greatly contributed to this knowledge. These
approaches provide unprecedented spatial and temporal
resolutions that reveal and elucidate the contribution of small
distinct brain areas previously considered as unified structures
and functional entities. The data collected have refined our
understanding of the local circuitry and mechanisms involved
at the level of the BLA, CEA, mPFC, HPC, and PAG in the
regulation of conditioned fear expression and recovery. Novel
circuits composed of specific cell populations, such as PL PV
inhibitory interneurons, CEl SOM1 neurons projecting to the
PAG, or CElON and CElOFF cells, have been identified and
proven to be critical for the control of fear expression. These
studies have demonstrated that the manipulation of small
subsets of excitatory or inhibitory neurons is often sufficient to
reduce or enhance fear expression, which provides novel
therapeutic avenues for anxiety disorders. It is conceivable
that the refinement of rTMS might allow the selective activa-
tion of specific neuronal elements. In particular, specific rTMS
activation of PV INs will be instrumental to precisely control
the spiking activity of excitatory neurons controlling fear
behavior. For instance, the efficiency of the manipulation of
PV INs on the regulation of behavior has been the object of
recent studies (88,119,120). Another important role of PV INs
is their involvement in the regulation of neuronal oscillations
throughout the brain (88,121). Neuronal oscillations play a key
role in organizing the firing activity of neurons and provide a
precise temporal frame to control behavior (89,92). Thus, the
manipulation of PV INs at specific phases of cortical oscil-
lations may represent an additional strategy to rescue trau-
matic fear memories. However, it remains to be demonstrated
whether these laboratory findings, largely in rodents, are
transferable to human patients.
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