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The amount of medical image data produced in clinical and research settings is rapidly

growing resulting in vast amount of data to analyze. Automatic and reliable quantitative

analysis tools, including segmentation, allow to analyze brain development and to

understand specific patterns of many neurological diseases. This field has recently

experienced many advances with successful techniques based on non-linear warping

and label fusion. In this work we present a novel and fully automatic pipeline for volumetric

brain analysis based onmulti-atlas label fusion technology that is able to provide accurate

volumetric information at different levels of detail in a short time. This method is available

through the volBrain online web interface (http://volbrain.upv.es), which is publically and

freely accessible to the scientific community. Our new framework has been compared

with current state-of-the-art methods showing very competitive results.
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INTRODUCTION

Automated and reliable quantitative MRI-based brain image analysis has a huge potential to
objectively help in the diagnosis and follow-up of many neurological diseases. Specifically, MRI
brain structure volumetry is being increasingly used to understand the nature and evolution of
those diseases.

For many years manual segmentation has been the method of choice to accurately analyze
specific brain structures. However, this task is tedious and time consuming, limiting its use in
clinical practice. To help in the quantification process, tools have been proposed making the
brain segmentation problem one of the most intensively studied topics during the last years. The
increased amount of neuroimaging data to process and the increasing complexity of the methods to
analyze those challenges image processing methods. This motivates the development of innovative
approaches able to address challenges related to this new “Big Data” paradigm (VanHorn and Toga,
2014). Efficient, automatic, robust and reliable methods for automatic brain analysis will play a
major role in near future, most of them powered by cost-effective cloud-based solutions.

The brain segmentation problem has been studied at different scales (from macroscopic tissues
to local structures). One of the first neuroimaging analysis tasks has been the segmentation of
the brain parenchyma in order to separate it from non-brain tissues and compute brain volume.
This brain extraction operation, also called skull stripping or intracranial cavity (ICC) extraction
depending on the definition of the volume segmented [typically depending on the inclusion or
not of external CerebroSpinal Fluid (CSF)]. The BET (Brain Extraction Tool) software from the
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FSL image processing library (Smith, 2002) is one a well-known
and widely used brain extraction techniques. Other techniques
such as Brain Surface Extractor (BSE) have been also used
successfully (Sandor and Leahy, 1997). More recently, multi-atlas
label fusion methods have been shown to be competitive (Leung
et al., 2011; Eskildsen et al., 2012). Intracranial cavity extraction
can also be obtained indirectly as part of the full modeling of
brain intensities using a parametric models as done in Statistical
Parametric Mapping (SPM) (Ashburner and Friston, 2005) or
VBM8 (Nenadic et al., 2010) software packages. Recently, we
presented a novel approach for intracranial cavity extraction
called NICE (Manjón et al., 2014) which is an evolution of the
BEaST technique enabling faster and more accurate results.

Another set of methods aim at classifying the main
intracranial tissues such as white matter (WM), gray matter
(GM), and CSF. A usual approach is to model the histogram of
the ICC area using a mixture of Gaussians estimated with the EM
algorithm (Wells et al., 1996) or with fuzzy C-means clustering
(Ahmed et al., 2002). A common feature of those methods is
the use of a priori information in the form of spatial probability
maps (e.g., SPM software Ashburner and Friston, 2005). All these
methods assign a membership degree or probability to belong
to specific tissue to every voxel rather than calculate the actual
amount of each tissue within each voxel. For this reason some
authors used the concept of partial volume coefficients (PVC)
to represent the actual amount of every tissue within each voxel
(Tohka et al., 2004; Manjón et al., 2010a).

Although, the global amount of WM, GM, and CSF within
the ICC may be an interesting biomarker for quantitative brain
analysis, some diseases present early local alterations instead of
global ones. Therefore, the analysis of different brain structures
separately can be very useful. In addition, the assessment
of brain structure asymmetries may be also interesting to
study normal/abnormal brain development and to detect
alterations due to some neurological diseases. Segmentation of
structures such us cerebrum, cerebellum, brainstem, and brain
hemispheres is thus of interest to assess brain asymmetry. Several
automatic strategies have been developed for hemisphere and
compartmental segmentation. First attempts were based on mid-
sagittal plane extraction or linear registration (Brummer, 1991;
Sun and Sherrah, 1997; Prima et al., 2002) but it was shown
that these approaches may produce inaccurate segmentation
results because the brain could be asymmetric (Zhao et al.,
2010). Current state of the art hemisphere/compartmental
segmentation methods are based on nonlinear registration (Maes
et al., 1999; Larsson, 2001) or on structure-reconstruction. In the
latter, seed voxels representing the hemispheres (and cerebellum)
are identified before hemispheres can be reconstructed (Hata
et al., 2000; Mangin et al., 2004; Zhao et al., 2010). Recently, we
presented a novel and competitive approach for compartmental
segmentation called NABS (Romero et al., 2015) that is based on
multi-atlas technology using non-local label fusion (Coupé et al.,
2011).

Finally, it may be also interesting to measure local volumes
at a finer scale since many pathologies affect specific areas of the
brain. For instance, the volumes of the hippocampi and the lateral
ventricles have been shown to be early biomarkers of Alzheimer

disease (Coupé et al., 2012). To segment the subcortical
nuclei, several automatic methods have been proposed using
deformable models (Shen et al., 2002; Chupin et al., 2007) or
atlas/template-warping techniques (Collins et al., 1995; Barnes
et al., 2008). More recently, multi-atlas label fusion segmentation
techniques has gained in popularity because they can combine
multiple atlas information, thereby minimizing mislabeling from
inaccurate affine or non-linear registration (Rohlfing et al., 2004;
Heckemann et al., 2006; Collins and Pruessner, 2010; Lötjönen
et al., 2010). The non-local label fusion method proposed by
Coupé et al. (2011) addresses this problem in an accurate and
efficient implementation only requiring a fast linear registration.

Several recent software tools have been developed to
automatically obtain some or all of these volumetric measures
using different strategies. For example, the SPM software is a
widely used tool to analyze global GM orWM alterations. Voxel-
Based Morphometry (VBM) toolbox (an extension of SPM)
has also been used to measure local GM atrophy. To perform
more specific volume measurements tools like the FSL package
(Jenkinson et al., 2012) or Freesurfer (Fischl et al., 2002) are freely
available. FSL is a comprehensive library of analysis tools for
functional MRI, anatomical MRI and DTI brain imaging data.
One of these tools, called FIRST (Patenaude et al., 2011), is able
to automatically segment subcortical brain structures. Similarly,
the Freesurfer pipeline can be used for volumetric segmentation,
cortical surface reconstruction and cortical parcellation; it has
been used in numerous studies despite its high computational
burden due to its ease of use. The great success of these tools is
due to their success in obtaining volumetric information from
MRI data, but also because of their free public availability.

The aim of this paper is to present volBrain, a new software
pipeline for volumetric brain analysis. This pipeline provides
automatically volumetric brain information at different scales in a
very simple web-based interface not requiring any installation or
advanced computational requirements. In the following sections,
the different parts of the volBrain platform are described and
some performance evaluation presented by comparing results to
existing methods.

MATERIALS AND METHODS

The volBrain system provides volumes/segmentations and
structure asymmetry ratios at different scales:

• Intracranial cavity (ICC was defined as the sum of all WM,
GM, and cerebrum-spinal fluid (CSF)).

• Tissue Volumes: WM, GM, and CSF volumes.
• Cerebrum, cerebellum, and brainstem volumes (separating

left from right cerebrum and cerebellum).
• Lateral ventricles and subcortical GM structures (putamen,

caudate, pallidum, thalamus, hippocampus, amygdala, and
accumbens).

All these segmentations with the exception of tissue volumes are
based on different adaptations of multi-atlas patch-based label
fusion segmentation (Coupé et al., 2011). The proposed pipeline
is based on a library of manually labeled cases to perform the

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2016 | Volume 10 | Article 30

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Manjón and Coupé volBrain: Online Brain Volumetry System

segmentation process. We will first describe the template library
construction and then the full segmentation pipeline. Finally, the
volBrain web interface will be presented.

Template Library Construction
Library Dataset Description
The library of manually labeled templates was constructed using
subjects from different public available datasets. To include a
wide range of age, different datasets covering nearly the entire
human life-span were used. Images were downloaded from the
different websites in raw format without any preprocessing. MRI
data from the following databases were used:

• Normal adults dataset: Thirty normal subjects (age range:
24–75 years) were randomly selected from the open
access IXI dataset (http://www.brain-development.org).
This dataset contains images of nearly 600 healthy subjects
from several hospitals in London (UK). Both 1.5 T (7 cases)
and 3 T (23 cases) images were included in our training
dataset. 3T images were acquired on a Philips Intera 3T
scanner (TR = 9.6ms, TE = 4.6ms, flip angle = 8◦, slice
thickness = 1.2mm, volume size = 256 × 256 × 150, voxel
dimensions = 0.94 × 0.94 × 1.2mm3). 1.5 T images were
acquired on a Philips Gyroscan 1.5T scanner (TR = 9.8ms,
TE = 4.6ms, flip angle = 8◦, slice thickness = 1.2mm,
volume size= 256× 256× 150, voxel dimensions= 0.94×
0.94× 1.2mm3).

• Alzheimer Disease (AD) dataset: Ten patients with
Alzheimer’s disease (age range = 75–80 years, MMSE =
23.7 ± 3.5, CDR = 1.1 ± 0.4) scanned using a 1.5 T
General Electric Signa HDx MRI scanner (General Electric,
Milwaukee, WI) were selected from OASIS dataset. This
dataset consisted of high resolution T1-weighted sagittal
3D MP-RAGE images (TR = 8.6ms, TE = 3.8ms, TI =
1000ms, flip angle = 8◦, matrix size = 256 × 256, voxel
dimensions= 0.938×0.938×1.2mm3). These images were
downloaded from the brain segmentation testing protocol
website (https://sites.google.com/site/brainseg/) although
they belong originally to the open access OASIS dataset
(http://www.oasis-brains.org).

• Pediatric dataset: Ten infant cases were also downloaded
from the brain segmentation testing protocol (Kempton
et al., 2011) website (https://sites.google.com/site/brainseg).
These data were originally collected by Gousias et al. (2008)
and are also available at http://www.brain-development.org.
The selected 10 cases are from the full sample of Thirty-
two 2-year old infants born prematurely (age = 24.8 ± 2.4
months). Sagittal T1 weighted volumes were acquired from
each subject (1.0 T Phillips HPQ scanner, TR = 23ms, TE
= 6ms, slice thickness = 1.6mm, matrix size = 256 ×
256, voxel dimensions = 1.04 × 1.04 × 1.6mm3 resliced to
isotropic 1.04mm3).

Preprocessing
To generate the templates library, all 50 selected T1-weighted
images were preprocessed using the following steps:

1. Denoising: All images were denoised using the Spatially
Adaptive Non-Local Means (SANLM) Filter (Manjón et al.,
2010b) to enhance the image quality. The SANLM filter
can deal with spatially varying noise levels across the image
without explicitly estimating the local noise level which makes
it ideal to process data with either stationary or spatially
varying noise in a fully automatic manner. This method has
been included in several software packages already such as
VBM8, CAT12 (http://www.neuro.uni-jena.de/vbm) or the
Connectome Computation System (Xu et al., 2015).

2. Coarse Inhomogeneity correction: To further improve the
image quality, an inhomogeneity correction step was applied
using the N4 method (Tustison et al., 2010). The N4 method
is recent and more efficient and robust improvement of the
N3 method (Sled et al., 1998), implemented as part of the ITK
toolbox (Ibáñez et al., 2003).

3. MNI space registration: The template library and the subject
to be segmented have to be located in the same stereotactic
space. A spatial normalization based on a linear affine
registration to the Montreal Neurological Institute (MNI152)
space was performed using ANTS software (Avants et al.,
2009). The resulting images in the MNI space have a size of
181 × 217 × 181 voxels with 1mm3 voxel resolution. The
transformationmatrix was estimated using the inhomogeneity
corrected image in previous step but applied the denoised
image without IH correction. Although, N4 removes most
of the inhomogeneity it sometimes does not remove it
completely (especially on 3T cases). Therefore, N4 was used
only to improve the linear registration parameter estimation.

4. Fine Inhomogeneity correction: Once the data is in MNI
space we used the inhomogeneity correction capabilities of
SPM8 (Ashburner and Friston, 2005) toolbox. We found this
model-based method to be quite robust once the data were in
the MNI space (especially for 3T images).

5. Intensity normalization: As the proposed method is based
on the estimation of image similarities using intensity-derived
measures, every image in the library was normalized. We used
a tissue-derived approach to force mean intensities of WM,
GM, and CSF to be as similar as possible across subjects of the
library in a similar manner than Lötjönen et al. (2010). Mean
values of CSF, GM, and WM tissues were estimated using the
Trimmed Mean Segmentation (TMS) method (Manjón et al.,
2008) that robustly estimates the mean values of the different
tissues by excluding partial volume voxels from the estimation
process and by using an unbiased robust mean estimator.
Finally, a piecewise linear intensity mapping (Lötjönen et al.,
2010) was applied ensuring that WM had an average intensity
of 250, GM of 150 and CSF of 50.

Manual Labeling
Manual labeling at different scales was performed by a
trained expert using ITK-SNAP software. Details of intracranial
cavity mask and macrostructures (cerebrum, cerebellum, and
brainstem) can be found in the corresponding original papers
(Manjón et al., 2014; Romero et al., 2015). Lateral ventricles and
subcortical structures were manually segmented from scratch
using ITK-SNAP software using the 3 orthogonal views to avoid
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any inconsistency in 3D. Lateral ventricles label were thresholded
using a threshold of 100 over the intensity-normalized images
to get a consistent label definition (note that choroid plexus was
not included in our lateral ventricles definition). All subcortical
structures were segmented according to the current common
definition criteria with the exception of hippocampus that was
segmented using EADC protocol (Frisoni and Jack, 2011).

We further increased the number of available priors in the
library by flipping them along the mid-sagittal plane using the
symmetric properties of the human brain. Therefore, a total
number of 100 labeled training templates (original and flipped)
have been created as done in BEaST paper (Eskildsen et al., 2012).

volBrain Pipeline Description
The volBrain pipeline is a set of image processing tasks that aims
at improving the quality of the input images and to set them into
a specific geometric and intensity space (the same than the used
one for the manually labeled training templates) to later segment
the different structures/tissues of interest. The volBrain pipeline
is based on the following steps:

1. Spatially adaptive Non-local means denoising
2. Rough inhomogeneity correction
3. Affine registration to MNI space
4. Fine SPM based inhomogeneity correction
5. Intensity normalization
6. Non-local Intracranial Cavity Extraction (NICE)
7. Tissue classification
8. Non-local hemisphere segmentation (NABS)
9. Non-local subcortical structure segmentation

Steps from 1 to 5 represent the preprocessing to be applied to
the input images to set them in the same geometric and intensity
space than the template library. Steps from 6 to 9 are focused in
the estimation of different brain volumes at different scales (see
Figure 1). We will now describe them in detail.

Non-local Intracranial Cavity Extraction (NICE)
NICE method is based on a multi-scale non-local label
fusion scheme and it represents an evolution of BEAST
method (Eskildsen et al., 2012) to improve both accuracy and
reproducibility, and to significantly reduce the computational
burden of the method. Furthermore, NICE method intracranial
cavity (ICC) mask definition includes WM, GM, and all CSF
(both internal and external) that is a very important confound
factor in brain analysis. Details of NICE method can be found in
Manjón et al. (2014).

Tissue Classification
Once the ICC is segmented, only WM, GM, and CSF voxels are
included within the ICC mask. To obtain the tissue proportions
we used an intensity driven approach. As done for intensity
normalization, mean values of CSF, GM, and WM tissues were
estimated using the TMS method (Manjón et al., 2008). TMS
robustly estimates the mean values of the different tissues by
excluding partial volume voxels from the estimation jointly with
the use of an unbiased robust mean estimator. Finally, the PVC
and the crisp segmentation were computed using the estimated

mean values. Details of this method can be found inManjón et al.
(2008).

Non-local Automatic Brain Hemisphere

Segmentation (NABS)
NABS method is also based on a multi-scale non-local label
fusion scheme. This method splits the GM and WM from
ICC mask into five regions: left-cerebrum, right-cerebrum, left-
cerebellum, right-cerebellum, and brainstem. NABS is able to
rapidly separate all this regions by only processing the so-called
“uncertain” areas. Details of this method can be found in Romero
et al. (2015).

Non-local Subcortical Structure Segmentation
Subcortical structure segmentation was performed using an
updated version of the algorithm described in Coupé et al. (2011).
As proposed by Coupé et al., voxel labeling is performed using
a weighted label vote scheme based on the non-local means
estimator (Buades et al., 2005). This technique is generally called
non-local label fusion in the literature.

In brief, for all voxels xi of the image to be segmented, the
estimation of the final label is based on a weighted label fusion
v(xi) of all labeled samples in the selected library (i.e., inside the
search area Vi for the N considered subjects):

v(xi) =
∑N

s=1

∑

j∈Vi
w(xi, xs,j).ys,j

∑N
s=1

∑

j∈Vi
w(xi, xs,j)

, (1)

where ys,j is the label given by the expert to voxel xs,j at location j
in subject s. The weight w(xi, xs,j) is computed as:

w(xi, xs,j) =







exp
−‖P(xi)−P(xs,j)‖22

h2 if ss > th

0 otherwise
, (2)

where ||.||2 is the L2-norm computed between each intensity of
the elements of the patches P(xi) and P(xs,j). If the structure
similarity ss between the patches is less than th, the weight is not
computed and is set directly to zero.

Finally, by considering the labels y defined in {0, 1}, the final
label L(xi) is computed as:

L(xi) =
{

1 v(xi) > 0.5
0 v(xi) < 0.5

(3)

In the updated method in volBrain pipeline we have modified the
voting scheme in several ways. First, we make use of the locality
principle assuming that samples closer in the space are likely to
be also similar on their label. Therefore, we redefine the similarity
weight to take into account not only intensity similarity but also
patch spatial proximity:

w(xi, xs,j) =







exp
− |‖xi−xj‖|2

σ2
d exp

−‖P(xi)−P(xs,j)‖22
h2 if ss > th

0 otherwise
(4)

where xi and xj are the coordinates of patch centers and σd is
normalization constant (σd =

√
2 mm was found to be optimal
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FIGURE 1 | volBrain processing pipeline. In the first row, the preprocessing of any new subject is presented. It consists in a non-local noise reduction filter,

inhomogeneity correction, MNI space registration, intensity normalization, and ICC extraction. In the second row, the result of the global tissue estimation (GM, WM,

and CSF) is shown. In the third row, the result of the macrostructures and subcortical structures segmentation is presented.

in our experiments). As can be noticed, this approach shares
some similarities to the bilateral filter proposed by Tomasi and
Manduchi (1998) for image denoising.

Finally, a comment about h parameter of Equation (4) has
to done since it plays a major role in the weight computation
process. In Coupé et al. (2011) this value was set to:

h2(xi) = λ min
xs,j

∥

∥P(xi)− P(xj,s)
∥

∥

2
2 + ε (5)

where ε is a small constant to ensure numerical stability in case
the patch under consideration is contained in the library. In
Coupé et al. (2011) λ was set to 1 but we found experimentally

that a value of 0.15 produced better results in the proposed
method probably due to the improved intensity normalization.

On the other hand, Equation (1) was modified to allow
multipleM tags instead of a single binary decision.

v(xi, k) =
∑N

s=1

∑

j∈Vi
w(xi, xs,j).δ(k, ys,j)

∑M
k=0

∑N
s=1

∑

j∈Vi
w(xi, xs,j)

(6)

where δ is the Kroenecker’s delta function and k = [0,M]. Finally,
for each voxel, the most voted label is selected as its label:

L(xi) = argmaxk v(xi, k) (7)
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We noted that since the classical non-local label fusion works on
a voxel-wise manner there is a lack of regularization on the final
labels which is common property of the anatomical structures.
To intrinsically provide some degree of label regularity we used a
block-wise vote scheme similar to the one proposed by Coupé
et al. (2008) for denoising and applied to segmentation in
Rousseau et al. (2011). So defined the new block-wise votes are
computed as follows:

v(B(xi), k) =
∑N

s=1

∑

j∈Vi
w(xi, xs,j).δ(k,B(ys,j)

∑M
k=0

∑N
s=1

∑

j∈Vi
w(xi, xs,j)

(8)

where B(xi) is a 3D region which is labeled at the same time.
Finally, the vote count v(xi, k) for the voxel xi is obtained in
an overcomplete manner by summing over all blocks containing
xi, i.e.,

v
(

xi, k
)

=
∑

xi∈B(z)

[v(B (z) , k)]i (9)

where [v(B(z),k)]i refers to the element corresponding to xi in the
block v(B(z),k) and the label L(xi) is decided as in Equation (7).

As shown in Coupé et al. (2011), different brain structures
may require different parameter settings to accurately capture
their properties. Basically this normally requires changing the
patch size in the similarity estimation (Equation 4) depending on
each structure size. An automatic way to perform this multiscale
process is to compute the patch similarities with different patch
sizes and then perform a late fusion of their contributions prior
estimating final label (Equation 8).

v(xi, k) = 0.5v1(xi, k)+ 0.5v2(xi, k) ∀xi∀k (10)

Here v1 and v2 represent the weights at each position and label for
patch sizes P1 and P2. Final map v is simply estimated as themean
of both contributions. Note that although an early aggregation
could be done (that is combining P1 and P2 in a single similarity
measure) this not necessarily the best strategy as we confirmed
experimentally.

As in Coupé et al. (2011) an exhaustive search for optimal
parameter settings was performed. First, we studied the
performance of the proposed method in function of the number
N of selected cases from the library. As expected, increasing the
number of selected training subjects increased the accuracy of
the segmentation. By using N = 25, we found an optimal setting
between accuracy and computational burden, this is in good
agreement with the previous version of the method where the
plateau was met around 20. To further increase the quality of
the segmentation a larger library must be used. We also studied
the impact of the 3D patch size and the 3D neighborhood on
segmentation accuracy. Optimal setting was found to be patch
size P1 set to 3× 3× 3 voxels and patch size P2 set to 5× 5× 5.
Finally, the search volume was set to 9× 9 × 9 voxels which was
found a good compromise between quality and computational
burden.

The volBrain Online System
Most of the developed pipelines for MR image analysis are
packages that need to be downloaded, installed and configured.
Installation step can be complicated and thus may require an
experimented person not always available in a research laboratory
or clinical context. In addition, the users have to be trained to use
the software and computational resources have to be allocated to
run it. These requirements can make complex the use of these
packages, especially the most recent and sophisticated ones since
they usually require high hardware requirements. Furthermore,
multiplatform versions and support has to be deployed to the
community of users.

We have tried to overcome all these problems by deploying
our proposed pipeline through a web interface (http://volbrain.
upv.es) providing not only access to the software pipeline but
also sharing the computational resources of our institution. Thus,
using the volBrain pipeline does not require any installation,
configuration or training. The volBrain volumetric analysis
system works remotely through a web interface using a SaaS
(Software as a Service) model to automatically provide a report
containing volumetric information from any submitted case. The
volBrain interface is supported by an XAMPP web server on a
Windows 7 system which has been developed in AJAX (HTML
+ Javascript + PHP) + MySQL. The segmentation pipeline is
executed on dedicated cluster running Windows Server 2012 R2
Datacenter using a Matlab compiled version of our pipeline (the
proposed method was fully implemented in MATLAB© 7.8.0
by using MEX code). The system runs on a cluster consisting
of seven machines DELL PowerEdge R720 with two processors
Intel Xeon E5-2620 (12 cores total per machine) and 64 GB of
RAM each one. The system has been designed to deal with up
to 14 concurrent volBrain jobs and has theoretical limit of 1200
processed cases per day.

To get access to the system any user is asked to register by
providing some personal information such as the email, name
and the institution name he/she belongs. The terms of use the
system are showed in the web page making special remark about
the use of the data for research purposes only. The web server
(see Figure 2) accepts requests (jobs) from users who submit
a single anonymized compressed MRI T1w Nifti file through a
web interface (see Figure 3). The web-server also dispatches the
computational load among the seven available machines. This job
dispatching is done by using a queuing system consisting of a
main queue (FIFO) for the incoming jobs and a process queue
(FIFO) for each cluster machine.

The web-cluster communication is bidirectional and it is
implemented by several PHP daemons running on the web server
and the cluster machines. Jobs are assigned to a machine using
database entries that are periodically consulted by the daemons
on the web server and the cluster. The cluster also notifies its
current status by updating these entries. The files from the web
server are transferred to the processing machines by secured FTP
and the results from the processing machines are also sent to the
web server which storages the results and send the corresponding
reports to the users (see Figure 2).

The output produced by the volBrain pipeline consists in a
pdf and csv files sent to the user by email. These files summarize
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FIGURE 2 | The volBrain system processing scheme.

FIGURE 3 | Capture of volBrain website user area. Here the user can submit a new case and download the results of previous cases.

the volumes and asymmetry ratios estimated from their data.
If the user provides the sex and age of the submitted subject,
population-based normal volumes and asymmetry bounds for
all structures are added for reference purposes. This normality
bounds were automatically estimated from the IXI dataset which
contains almost 600 normal subjects covering most of adult
lifespan.

Furthermore, the user can access to its user area through
volBrain website (see Figure 3) to download the resulting Nifti
files containing the segmentations at different scales (both in
native or MNI space). Figure 4 shows an example of a volumetry
report produced by volBrain (note that a screenshot of the results
is included for quality control purposes).

EXPERIMENTS AND RESULTS

In this section some experimental results are shown to highlight
the accuracy and reproducibility of the proposed pipeline.

Since volBrain provides results at different scales both
accuracy and reproducibility at each scale will be commented.
Specifically, we will comment the results for intracranial
cavity extraction (NICE), Macrostructure segmentation (NABS)
and subcortical structure segmentation. Note that the tissue
classification is not included in this evaluation since it is
based on our particular way to compute PVCs. Therefore,
there is no a direct comparison with methods like SPM
or VBM.
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FIGURE 4 | Example of volBrain pdf report.

NICE results were already presented recently in its
corresponding paper (Manjón et al., 2014). To summarize,
NICE was compared with BEaST and VBM8 and it was found
to be significantly better (it obtained the best DICE coefficient
(0.9911) compared to BEAST (0.9880) and VBM8 (0.9762)).
Moreover, an independent test was also performed using the SVE
website (see https://www.nitrc.org/projects/sve/) were NICE
ranked first (NICE was still first at the time of writing this paper).
Regarding the reproducibility, NICE was found to be the most
reproducible method followed by VBM8 and finally BEAST.
For further details we recommend the reader the original NICE
paper (Manjón et al., 2014).

NABSmethodwas also recently evaluated in its corresponding
paper. Summarizing, NABS was compared with ADISC (Zhao
et al., 2010) and it obtained a significantly better DICE coefficient
(0.9962) compared to ADISC (0.9868). NABS method was also
compared to ADISC method using an application consisting
on estimating brain asymmetries on AD cases. We showed that
NABSmethod was able to better predict the patient status. Again,
further details can be found in the original paper (Romero et al.,
2015).

Finally, experiments to measure both accuracy and
reproducibility of the proposed subcortical segmentation
method were performed and comparison with state-of-the-art
related approaches are presented.

Accuracy
A leave-two-out procedure was performed for the 50 subjects
of the library (i.e., excluding the case to be segmented and its
mirrored version). Dice’s kappa (Zijdenbos et al., 1994) was
then computed by comparing the manual segmentations with
the segmentations obtained with our method. The proposed
method was also compared with two publically available software
packages for subcortical brain structures labeling (Freesurfer,
Fischl et al., 2002) and FSL-FIRST (Patenaude et al., 2011).
Both methods were run on the CBRAIN interface (http://mcin-
cnim.ca/neuroimagingtechnologies/cbrain/) with their default
parameters (Tarek et al., 2014).

As can be noted on Table 1, volBrain obtained the best
DICE coefficients for all the considered structures. Moreover, the
improvement was statistically significant for all the structures
and for the two methods compared. VolBrain obtained an
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TABLE 1 | Mean Dice coefficient of the different subcortical structures

over the 50 cases of template library.

Structure volBrain Freesurfer FIRST

Lat. Ventricles 0.9836 ± 0.0111* 0.8315 ± 0.0589 —

Caudate 0.9427 ± 0.0196*† 0.8195 ± 0.0418 0.8366 ± 0.0706

Putamen 0.9442 ± 0.0226 *† 0.8162 ± 0.0396 0.8775 ± 0.0192

Thalamus 0.9476 ± 0.0196 *† 0.8157 ± 0.0247 0.8144 ± 0.0322

Pallidum 0.8914 ± 0.0403 *† 0.7454 ± 0.0906 0.7851 ± 0.0575

Hippocampus 0.9533 ± 0.0092 *† 0.7886 ± 0.0254 0.8429 ± 0.0303

Amygdala 0.8795 ± 0.0559 *† 0.5844 ± 0.1092 0.5895 ± 0.0962

Accumbens 0.8362 ± 0.0572 *† 0.5589 ± 0.0697 0.6483 ± 0.0916

Average 0.9224 ± 0.0570*† 0.7546 ± 0.1198 —

Average 0.9136 ± 0.0555 *† 0.7327 ± 0.1132 0.7706 ± 0.1087

Average represents the average dice without including lateral ventricles. Best results are

in bold. *Indicates statistically significant differences between volBrain and Freesurfer (p

< 0.05).
†
Indicates statistically significant differences between volBrain and FIRST.

average dice coefficient (without including lateral ventricles)
of 0.9136 while Freesurfer obtained 0.7327 and FIRST 0.7706.
A visual comparison of one sample case is showed Figure 5

were the labeling of the three different methods are presented
with 3D representation (note that FIRST does not segment
lateral ventricles and therefore they are not included in the
comparative). On one hand, Freesurfer method produced a
rough segmentation of the different structures with significant
errors. On the other hand, FIRST performed better and produced
smooth surfaces on the different structures. However, FIRST
method seems to over segment most of the structures.

Finally, volumes obtained with the automatic methods were
compared with volumes obtained with manual segmentations
considered as the gold standard. In Figure 6, the results of the
different methods are displayed. The proposed method produced
consistent volumes showing higher correlation with volumes
obtained by manual segmentations. In addition, Freesurfer and
FIRST showed a greater dispersion on the measures. As can be
seen on Figure 6, FIRST severely overestimate the volumes of
most of the structures.

We are aware that the presented volume and accuracy results
are slightly biased in favor to volBrain due to the use of the same
label definition for training and validation. However, minimal
differences on label definition where used compared to FIRST or
Freesurfer labels with the exception of lateral ventricles (we did
not include choroid plexus) and hippocampus (we used EADC
protocol). Besides, it has been recently shown by using a joint
DTIMRI analysis (Næss-Schmidt et al., 2016) that Freesurfer and
FIRST overestimate most of subcortical structures that matches
with our findings. In summary, the large differences found among
the compared methods provide evidences of the high quality
of the proposed pipeline. A particular mention has to be done
for hippocampus segmentation. Since we used the harmonized
EADC protocol (Frisoni et al., 2015), we can conclude that
volBrain is the most accurate method to segment hippocampus
according to this protocol. This is especially important given
that fact that EADC protocol is the new consensus protocol for
hippocampus analysis for Alzheimer’s disease.

Reproducibility
A very important feature for a measurement method is
its reproducibility. To measure the reproducibility of the
different compared methods, we used a reproducibility
dataset of the brain segmentation testing protocol website
(https://sites.google.com/site/brainseg/). This dataset consists of
a test-retest set of 20 subjects scanned twice in the same scanner
and with the same sequence (SSS).

To measure the reproducibility of the two repeated sets we
used the Percent Volume Difference (PVD) and the Percent
Volume Overlap (PVO) (Morey et al., 2010) defined as follows:

PVD(C1,C2) = 100
2 |‖C1‖0 − ‖C2‖0|
‖C1‖0 + ‖C2‖0

(11)

PVO(C1,C2) = 100
2 ‖|C1 − C2|‖0
‖C1‖0 + ‖C2‖0

where C1 and C2 represent the segmentations 1 and 2
respectively. Note that the reference to compute the percentage
is set to the mean of both segmentations to avoid any order
influence.

SSS Dataset
This reproducibility dataset consist in a subset of the OASIS
(www.oasis-brains.org) dataset consisting in 20 subjects (age =
23.4 ± 4.0 years, 8 females) who were scanned using the same
pulse sequence two times (1.5 T Siemens Vision scanner, TR =
9.7ms, TE= 4ms, TI = 20ms, flip angle= 10◦, slice thickness=
1.25mm, matrix size = 256 × 256, voxel dimensions = 1 × 1 ×
1.25mm3 resliced to 1× 1× 1mm3, averages= 1).

The three compared methods were run on this dataset but the
comparison was done only on a subset of 18 subjects since FIRST
did not produce valid results for two of the 20 cases. Since PVD
and PVO measures do not distribute normally we represent the
results using the median and the interquartile interval and we
used theWilcoxon rank test to measure the statistical significance
of the differences between methods. Results of this comparison
are summarized on Tables 2, 3. As can be noted, volBrain
was more reproducible in general compared to Freesurfer and
FIRST (although the differences were not statistically significant
overall).

Regarding to the volume estimation, volBrain was found
to be significantly more reproducible than Freesurfer for
putamen (p < 0.05) while FIRST was significantly better
than volBrain and Freesurfer for the pallidum. In relation to
the segmentation masks reproducibility, volBrain was found to
be most reproducible method overall. Especially, volBrain was
significantly more reproducible than Freesurfer for all structures
with the exception of lateral ventricles. Compared to FIRST,
volBrain was found more reproducible for hippocampus and
amygdala while FIRST was more reproducible for thalamus and
pallidum.

Computational Time
The proposed method takes around 12min in average to
complete the whole pipeline, this included 30 s for denoising,
30 s for inhomogeneity correction, 2min to perform registration
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FIGURE 5 | Visual example of the segmentation results (Axial, sagittal, and coronal views and 3D representation of segmented subcortical structures).

First row: volBrain results. Second row, Freesurfer results; Third row, FIRST results. Note that FIRST output does not include lateral ventricles.

into MNI space, 3min for SPM inhomogeneity correction, 5 s
for intensity normalization, 2min to do brain extraction, 5 s
to perform tissue classification, 2min for NABS and 3min
for structures labeling. Freesurfer normally takes around 15 h
to perform the complete analysis (which includes also surface
extraction). FIRST running time is approximately 10min (only
for the subcortical structure segmentation).

DISCUSSION

We proposed a novel pipeline that is able to automatically
segment the brain at different scales in a robust and efficient
manner using a library of expert segmentations used as priors
and an enhanced version of our patch-based label fusion scheme.

We have shown that the proposed pipeline is able to provide
state-of-the-art results at different levels (intracranial cavity, brain
macro-structures and subcortical structures) in a very efficient
manner.

The proposed pipeline was compared with two well-
established software packages (Freesurfer and FIRST) for
subcortical structure segmentation. The volBrain pipeline was
found to significantly improve the accuracy (according to the
used protocol) compared to both methods. We should also
remark that volBrain platform is one of the first few platforms
to provide hippocampus segmentation based on EADC protocol
that will be the reference definition on AD in the next years.
Regarding to the reproducibility, volBrain was also found to be
the more reproducible than Freesurfer and FIRST overall for
both volume and shape estimation. This is an important issue
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FIGURE 6 | Correlation between volumes obtained with volBrain (Black, first 2 rows), Freesurfer (Blue, 3 and 4 rows), and FIRST (Green, last 2 rows)

and volumes obtained with manual segmentations considered as the gold standard. Red lines represent identity.
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TABLE 2 | Median of PVD.

Structure volBrain Freesurfer FIRST

Lat. Ventricles 4.95 [7.42] 5.06 [4.85] —

Caudate 0.53 [1.22] 1.39 [2.47] 1.19 [1.20]

Putamen 0.69 [1.76]* 2.23 [2.90] 1.20 [1.23]

Thalamus 0.82 [1.04] 0.93 [0.66] 0.98 [1.67]

Pallidum 1.60 [1.92] 3.18 [3.72] 0.92 [0.96]†

Hippocampus 1.41 [2.97] 1.73 [1.74] 2.15 [3.20]

Amygdala 3.38 [2.06] 4.13 [5.23] 3.94 [3.63]

Accumbens 2.65 [22.81] 2.68 [2.48] 4.26 [6.92]

Overall 1.59 2.33 2.09

volBrain was compared to the other two methods (corresponding interquartile interval is

shown in brackets). Best results are in bold. *Indicates statistically significant differences

between volBrain and Freesurfer (p < 0.05).
†
Indicates statistically significant differences

between volBrain and FIRST. Overall represents the mean PVD of all structures excluding

lateral ventricles to enable direct global comparison of the three methods.

TABLE 3 | Median of PVO.

Structure volBrain Freesurfer FIRST

Lat. Ventricles 94.09 [4.71] 90.79 [4.33] —

Caudate 96.96 [3.06]* 91.65 [1.85] 96.62 [1.12]

Putamen 97.21 [1.34]* 92.36 [1.50] 97.37 [0.76]

Thalamus 97.38 [1.24]* 93.58 [1.38] 98.22 [1.18]†

Pallidum 95.65 [1.19]* 86.29 [5.95] 96.92 [1.32]†

Hippocampus 96.19 [1.88]*† 90.90 [1.08] 93.80 [2.04]

Amygdala 93.25 [2.74]*† 87.78 [1.43] 91.37 [2.63]

Accumbens 93.10 [13.01]* 84.55 [3.46] 91.91 [2.55]

Overall 95.68 89.59 95.17

volBrain was compared to the other two methods (corresponding interquartile interval is

shown in brackets). Best results are in bold. *Indicates statistically significant differences

between volBrain and Freesurfer (p < 0.05).
†
Indicates statistically significant differences

between volBrain and FIRST. Overall represents the mean PVO of all structures excluding

lateral ventricles to enable direct global comparison of the three methods.

since the higher the reproducibility the higher the chances to
detect subtle variations induced by the disease. In addition, we
found that segmentation masks obtained with FIRST were more
accurate andmore reproducible than Freesurfer ones. The results
on volume reproducibility between Freesurfer and FIRST were
less obvious since they were structure dependent. However, it has
to be noted that FIRST failed for 2 cases of 20 (i.e., 10% of failure
rate) while both volBrain and Freesurfer worked for all the 20
cases. The high failure rate of FIRST can limit it use in clinical
context (Kempton et al., 2011). Finally, volBrain pipeline was
also found more computationally efficient than Freesurfer since
it takes few minutes to produce the results compared to several
hours in the case of Freesurfer (we have to note that Freesurfer
provides full brain segmentation and cortical thickness in this
time) and similar than FISRT (only for subcortical segmentation
without lateral ventricles).

Moreover, an online web-based platform has been deployed
that gives access to the whole scientific community not only to the
software pipeline but also to our own computational resources

(we limit the number of cases that a user can submit daily to
10 in order to share our system to the higher possible number
of users). Although, our computational resources are limited, the
efficiency of the proposed pipeline allows processing around 1200
subjects per day. At the day of writing this paper, the system
had already more than 550 registered users from 284 different
institutions from all around the world and has automatically
processed more than 10,000 subjects during its first year with a
failure rate lower than the 2%. The peak activity of our system
was 348 cases in 1 day without major problems. However, given
themodularity and scalability of our system, we can easily expand
the number of computational nodes by adding more computers
locally or by using external cloud-based processing nodes. From
the user’s perspective, we have been informed that to upload a
case to the system takes from few seconds to 1min (for very
slow connections or big size files). Besides, the lack of parameter
tuning and the easiness of use have been highlighted by several
users as a really valuable feature of the system.

CONCLUSION

In this paper, we present a novel pipeline based on our state-
of-the-art non-local label fusion technology to segment brain
anatomical structures at different scales. The proposed pipeline
has been compared with state-of-the-art related packages
showing competitive results in term of accuracy, reproducibility
and computational time. Besides, we hope that the online nature
of the proposed pipeline will facilitate the access of any user
around the world to the proposed system making their MRI
data analysis simpler and more efficient. We plan to extend the
volBrain capabilities in the near future to segment all the brain
structures including cortical areas and to add regional cortical
thickness measurements in the final report.
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